Effect of nickel on the organization of actin filaments in Arabidopsis thaliana primary root cells

TitleEffect of nickel on the organization of actin filaments in Arabidopsis thaliana primary root cells
Publication TypeJournal Article
Year of Publication2016
AuthorsHoriunova, II, Krasylenko, Yu.A, Yemets, AI, Blume, Ya.B
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.02.108
Issue2
SectionBiochemistry
Pagination108-115
Date Published2/2016
LanguageRussian
Abstract

The influence of one of the most toxic heavy metals — nickel (Ni2+) — on the organization of actin filaments (microfilaments) of different types of Arabidopsis thaliana (L.) root cells is studied in living cells by the laser scanning microscopy. To visualize microfilaments, the A. thaliana line expressing chimeric gene gfp-fabd2 was used. Ni2+ leads to a significant inhibition of the growth of the main root and disturbs its morphology, causing the swelling of epidermal cells and inducing a large number of abnormally long root hairs. For the first time, it has been shown that Ni2+ disturbs the organization of actin filaments in cells, leading to morphological changes of a root as the main organ, being the first exposed to the intoxication by soil pollutants. It is found that the most sensitive to its action are actin filaments of epidermal cells of all growth zones of A. thaliana root.

Keywordsactin, cytoskeleton, cytotoxicity, heavy metals, microfilaments, nickel, root cells
References: 
  1. Anke M., Groppel B., Kronemann H., Grün M. IARC Sci. Publ, 1984, 53: 339–365.
  2. Chen C., Huang D., Liu J. Clean, 2009, 37, Iss. 4–5: 304–313.
  3. Volkmann D., Baluska F. Microsc. Res. Tech., 1999, 47, No 2: 135–154. https://doi.org/10.1002/(SICI)1097-0029(19991015)47:2<135::AID-JEMT6>3.0.CO;2-1
  4. Dovgaluk A. I., Kalinyak T. B., Blume Yu. B. Dopov. Nac. akad. nauk Ukr., 2002, No 1: 162–168 (in Russian).
  5. Přibyl P., Cepák V., Zachleder V. Toxicol. in Vitro, 2008, 22: 1160–1168. https://doi.org/10.1016/j.tiv.2008.03.005
  6. Voigt B., Timmers A. C. J., Samaj J., Muller J., Baluska F., Menzel D. Eur. J. Cell Biol., 2005, 84: 595–608. https://doi.org/10.1016/j.ejcb.2004.11.011
  7. Horiunova I. I., Krasylenko Yu. A., Zaslavsky V. A., Yemets A. I Dopov. Nac. akad. nauk Ukr., 2014, No 9: 127–134 (in Russian).
  8. Rahman A., Bannigan A., Sulaman W., Pechter P., Blancaflor E. B., Baskin T. I. Plant J., 2007, 50: 514–528. https://doi.org/10.1111/j.1365-313X.2007.03068.x
  9. Dovgalyuk A., Kalynyak T., Blume Ya. B. Cell Biol. Int., 2003, 27: 193–195. https://doi.org/10.1016/S1065-6995(02)00334-7
  10. L'Huillier L., d'Auzac J., Durand M., Michaud-Ferrière N. Can. J. Bot., 1996, 74: 1547–1554. https://doi.org/10.1139/b96-187
  11. Ilyin V. B. Pochvovedenie, 1986, No 9: 90–98 (in Russian).
  12. Miller D., Harble W., Gottwald J. et al. Plant Cell, 1997, 9: 2105–2117. https://doi.org/10.1105/tpc.9.12.2105
  13. DalleDonne I., Milzani A., Ciapparelli C., Comazzi C., Gioria M. R., Colombo R. Biochim. Biophys. Acta, 1999, 1426: 32-42.
  14. Apostolova M. D., Christova T., Templeton D. M. J. Toxicol. Sci., 2006, 89, No 2: 465–474. https://doi.org/10.1093/toxsci/kfj035
  15. Li W., Zhao Y. Z., Chou I.N. Toxicology, 1993, 77: 65–79. https://doi.org/10.1016/0300-483X(93)90138-I