Title | Generalization of a Thiele fraction |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Makarov, VL, Demkiv, II |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2016.02.017 |
Issue | 2 |
Section | Mathematics |
Pagination | 17-24 |
Date Published | 2/2016 |
Language | Ukrainian |
Abstract | A new type of the generalized integral chain fraction interpolation is proposed. It extends the Thiele type continued fraction interpolation to the class of non-linear functionals defined in an arbitrary linear topological space. We study two specific realizations of such interpolation process. One of them is a Thiele type continued fraction interpolation for functions with an arbitrary number of variables without any additional geometric constrains on the placement of interpolation points. |
Keywords | continued fraction, interpolation points, Thiele fraction |
References:
- Levri P., Bultheel A. Numer. Algorithms, 1993, 4: 225–239. doi: https://doi.org/10.1007/BF02144105
- Tan J., Fang Y. Numer. Algorithms, 2000, 24: 141–157. doi: https://doi.org/10.1023/A:1019193210259
- Gensane Th. Numer. Algorithms, 2012, 60: 523–529. doi: https://doi.org/10.1007/s11075-011-9528-8
- Graves-Morris P. R. Numer. Math., 1983, 42: 331–348. doi: https://doi.org/10.1007/BF01389578
- Gu C. Linear Algebra Appl., 1999, 295, Iss. 1–3: 7–30. doi: https://doi.org/10.1016/S0024-3795(99)00036-1
- Kuchmins'ka Kh.Yo. Two-dimensional continued fractions, Lviv: Pidstryhach Inst. Appl. Probl. Mech. and Math. NAS Ukraine, 2010 (in Ukrainian).
- Cui R., Gu Ch. Appl. Math. and Comput., 2014, 236: 202–214. doi: https://doi.org/10.1016/j.amc.2014.03.031
- Makarov V. L., Demkiv I. I. Reports of the National Academy of Sciences of Ukraine, 2016, 1: 12–18 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2016.01.012
- Makarov V. L., Demkiv I. I. Mathematical Methods and Physicomechanical Fields, 2014, 57, 4: 44–50 (in Ukrainian).
- Yanovich L. A. Approximate computation of path integrals with respect to Gaussian measures, Minsk: Nauka i Tehnika, 1976 (in Russian).
- Egorov A. D., Sobolevskii P. I., Yanovich L. A. Approximate methods for calculating path integrals, Minsk: Nauka i Tekhnika, 1985 (in Russian).
- Akhiezer N. I., Glazman I. M. Theory of linear operators in Hilbert space, Moscow: Nauka, 1966 (in Russian).
- Makarov V. L., Khlobystov V. V., Demkiv I. I. Reports of the National Academy of Sciences of Ukraine, 2007, 12: 22–27 (in Ukrainian).