Features of the grain boundary sliding development under conditions of superplasticity in an alloy with bimodal structure

TitleFeatures of the grain boundary sliding development under conditions of superplasticity in an alloy with bimodal structure
Publication TypeJournal Article
Year of Publication2016
AuthorsPoyda, AV, Zavdoveev, AV, Poyda, VP, Bryukhovetskiy, VV, Milaya, DE
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.02.054
Issue2
SectionPhysics
Pagination54-61
Date Published2/2016
LanguageRussian
Abstract

The features of a structural state and a deformation relief of matrix aluminum alloy 1933 are investigated. It is determined that the grain boundary sliding is carried out intensively both on the high-angle boundaries of ultrafine grains and the low-angle boundaries of large polygonized grains parallel to the strain axis of the sample. The mechanism of the boundary sliding in alloy 1933 with a bimodal structure is discussed.

Keywordsbimodal structure, grain boundary sliding, high-angle grain boundaries, low-angle grain boundaries, superplasticity
References: 
  1. Novikov I. I., Portnoy V. K. Sverkhplastichnost' metallov i splavov s ul'tramelkim zernom, Moskva: Metallurgiya, 1981 (in Russian).
  2. Kaybyshev O. A. Sverkhplastichnost' promyshlennykh splavov, Moskva: Metallurgiya, 1984 (in Russian).
  3. Kaybyshev O. A., Utyashev F. Z. Sverkhplastichnolst', izmel'chenie struktury i obrabotka trudnodeformiruemykh splavov, Moskva: Nauka, 2002 (in Russian).
  4. Kuznetsova R. I., Zhukov N. N., Kaibyshev O. A., Valiev R. Z. Phys. Stat. Sol., 1982, 70A, No 2: 371–378. https://doi.org/10.1002/pssa.2210700203
  5. Bryukhovetskiy V. V. FMM, 2001, 92, No 1: 107–111 (in Russian).
  6. Beletskiy V. M., Krivov G. A. Alyuminievye splavy (sostav, svoystva, tekhnologiya, primenenie) spravochnik. Pod red. akad. RAN I. N. Fridlyandera, Kyiv: Komintekh, 2005(in Russian).
  7. Varyukhin V. N., Pashinskaya E. G., Zavdoveev A. V., Burkhovetskiy V. V. Vozmozhnosti metoda difraktsii obratnorasseyannykh elektronov dlya analiza struktury deformirovannykh materialov, Kyiv: Nauk. Dumka, 2014 (in Russian).
  8. Pedun D. E., Poyda V. P., Bryukhovetskiy V. V. et al. Visnyk KhNU, 2012, No 1019, ser. Fizyka, 16: 63–69 (in Russian).
  9. Pedun D. E., Poyda V. P., Bryukhovetskiy V. V. et al. Metallofizika i noveyshie tekhnologii., 2012, 34, No 10: 1397–1410 (in Russian).
  10. Poyda V. P., Pedun D. E., Bryukhovetskiy V. V. et al. FMM, 2013, 114, No 9: 848–858 (in Russian).
  11. Karnavskaya T. G., Avtokratova E. V., Bragov A. M. and others. Pis'ma v ZhTF, 2012, 38, No 13: 48–55.
  12. Higashi K., Nieh T. G., Mabuchi M., Wadsworth J. Scr. Metall. and Mater., 1995, 32, No 7: 1079–1084. https://doi.org/10.1016/0956-716X(94)00003-Z