Influence of grafted β-cyclodextrin on the sorbing activity of silica gel to ions of toxic metals

TitleInfluence of grafted β-cyclodextrin on the sorbing activity of silica gel to ions of toxic metals
Publication TypeJournal Article
Year of Publication2016
AuthorsBelyakova, LA, Belyakov, VN, Vasilyuk, SL, Shvets, OM
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.03.069
Issue3
SectionChemistry
Pagination69-77
Date Published3/2016
LanguageRussian
Abstract

The uptake of cations of toxic metals (cadmium, lead, and copper) and oxyanions from nitrate, phosphate, and arsenate aqueous solutions by silica chemically modified with β-cyclodextrin is studied. It is proved that the sorption process involves the simultaneous formation of surface supramolecular structures "β-cyclodextrin — oxyanion" and mixed complexes of metal cations with the side functional groups of grafted β-cyclodextrin. It is found that the adsorption of cations correlates with the electronegativity of chemical elements, and the adsorption of oxyanions — with the complementarity of their sizes to parameters of the internal cavity of the cyclic oligosaccharide.

Keywordscation, oxyanion, silica gel, sorption, β-cyclodextrin
References: 
  1. Steed J. W., Atwood J. L. Supramolecular Chemistry, Chichester: Wiley, 2000.
  2. Lehn J.-M. Supramolecular Chemistry. Concepts and Perspectives, Weinheim: VCH, 1995. https://doi.org/10.1002/3527607439
  3. Belyakov V. N., Belyakova L. A., Varvarin A. M., Khora O. V., Vasilyuk S. L., Kazdobin K. A., Maltseva T. V., Kotvitskyy A. G., Danil de Namor A. F. J. Colloid Interface Sci., 2005, 285: 18–26. https://doi.org/10.1016/j.jcis.2004.11.027
  4. Shvets O. M., Belyakova L. A. J. Hazard. Mater., 2015, 283: 643–656. https://doi.org/10.1016/j.jhazmat.2014.10.012
  5. Iler R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, New York: Wiley, 1979.
  6. Gupta S. S., Bhattacharyya K. G. J. Colloid Interface Sci.,2006, 295: 21–32. https://doi.org/10.1016/j.jcis.2005.07.073
  7. Langmuir I. J. Am. Chem. Soc., 1918, 40: 1361–1403. https://doi.org/10.1021/ja02242a004
  8. Freundlich H., Heller W. J. J. Am. Chem. Soc., 1939, 61: 2228–2230. https://doi.org/10.1021/ja01877a071
  9. Smith A. L. Applied Infrared Spectroscopy, New York: Wiley, 1982.
  10. Szejtli J. Chem. Rev., 1998, 98: 1743–1752.
  11. Rao C. N. R. Ultra-Violet and Visible Spectroscopy Chemical Applications, London: Butterworth, 1961.
  12. Wen X., Tan F., Jing Z., Liu Z. J. Pharm. Biomed. Anal, 2004, 34: 517–523. https://doi.org/10.1016/S0731-7085(03)00576-4
  13. Slabaugh W. H., Parsons T. D. General Chemistry, New York: Wiley, 1976.
  14. Person R. G. J. Am. Chem. Soc., 1963, 85: 3533–3539. https://doi.org/10.1021/ja00905a001