On the solution of reverse Dido’s Problem for convex surfaces of revolution

TitleOn the solution of reverse Dido’s Problem for convex surfaces of revolution
Publication TypeJournal Article
Year of Publication2016
AuthorsDrach, KD
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.04.007
Issue4
SectionMathematics
Pagination7-12
Date Published4/2016
LanguageRussian
Abstract

By applying Pontryagin’s maximum principle, we prove a reverse isoperimetric inequality and thus solve a reverse Dido’s Problem for λ-convex surfaces of revolution in the three-dimensional Euclidean space.

Keywordsnormal curvature, Pontryagin’s maximum principle, reverse isoperimetric inequality, λ-convexity
References: 
  1. Burago Yu. D., Zalgaller V. A. Geometric inequalities, Leningrad: Nauka, 1980 (in Russian).
  2. Howard R., Treibergs A. Rocky Mountain J. Math., 1995, 25, No 2: 635–684. https://doi.org/10.1216/rmjm/1181072242
  3. Gard A. C. Reverse Isoperimetric Inequalities in $\mathbb R^{3}$: PhD Thesis, Columbus: Ohio State University, 2012.
  4. Borisenko A., Drach K. Math. Notes, 2014, 95, No 5: 590–598 (in Russian). https://doi.org/10.1134/S0001434614050034
  5. Drach K. D. Dopov. Nac. akad. nauk Ukr., 2014, No 11: 11–15 (in Russian; English version: arXiv:1402.2688 [math.DG]).
  6. Borisenko A., Drach K. J. Dyn. Control Syst., 2015, 21, No 3: 311–327. https://doi.org/10.1007/s10883-014-9221-z
  7. van Heijenoort J. Comm. Pure Appl. Math., 1952, 5: 223–242. https://doi.org/10.1002/cpa.3160050302
  8. Blaschke W. Kreis und Kugel, Moskva: Nauka, 1967 (in Russian).
  9. Borisenko A. A., Drach K. D. Dopov. Nac. akad. nauk Ukr., 2015, No 3: 11–16 (in Russian; English version: arXiv: 1402.2691[math.DG]).
  10. Milyutin A. A., Dmitruk A. V., Osmolovskij N. P. Maximum principle in optimal control, Moscow: Izd. CPI pri mekh.-mat. fakul’tete MGU, 2004 (in Russian).
  11. Kelley H. J., Kopp R. E., Moyer H. G. Topics in Optimization, Ed. G. Leitmann, New York: Academic Press, 1967: 63–103.
  12. Borisenko A., Drach K. Sb. Math., 2013, 204, No 11: 1565–1583. https://doi.org/10.1070/SM2013v204n11ABEH004349
  13. Borisenko A. Diff. Geom. Appl., 2002, 17: 111–121. https://doi.org/10.1016/S0926-2245(02)00102-X