Modeling of the signal propagation in real systems with finite interval and absorption

TitleModeling of the signal propagation in real systems with finite interval and absorption
Publication TypeJournal Article
Year of Publication2016
AuthorsKryvonos, Yu.G, Selezov, IT
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.04.035
Issue4
SectionInformation Science and Cybernetics
Pagination35-40
Date Published4/2016
LanguageRussian
Abstract

The wave propagation is investigated on the basis of a generalized hyperbolic equation with dissipation describing the wave propagation with finite velocity. The propagation of harmonic waves and the initial boundary-value problem of a propagation of the pulse from the input on a finite interval with full absorption are analyzed on the basis of the Laplace transformation and a numerical inverse transformation.

Keywordsabsorption, finite interval, Laplace transform, wave propagation
References: 
  1. Wiener N. Cybernetics or control and communication in the animal and the machine, Cambrifge: Massachus. Institute of Techonogy, 1961. https://doi.org/10.1037/13140-000
  2. Selezov I. T., Kryvonos Yu. G. Wave problems of biohydrodynamics and biophysics, Kyiv: Nauk. Dumka, 2013 (in Russian).
  3. Mc Cartin B. J. Appl. Math. Sci., 2009, 3, No 42: 2055–2083.
  4. Vabishchevich P. N. BIT Number Math., 2013. DOI 10.1007/s10 543–013–0423–7.
  5. Doetsch G. Anleitung zum praktischen gebrauch der Laplace-Transformation, und der Z-transformation, München: R. Oldenbourg, 1956.
  6. Courant R., Hilbert D. Methods of mathematical physics. V. 2. New York-London: Interscience, 1962.
  7. Kryvonos Yu. G., Selezov I. T. Dopov. Nac. akad. nauk Ukr., 2014, No 9: 40–43 (in Russian).
  8. Maxwell J. C. A dynamical theory of the electromagnetic field, Phil. Trans. Roy. Soc.,1865, 155: 459–512. https://doi.org/10.1098/rstl.1865.0008
  9. Maxwell J. C. Philos. Trans. Roy. Soc., London,1867, 157: 49–88. https://doi.org/10.1098/rstl.1867.0004
  10. Cattaneo C. Atti Seminario Mat. Fis. Univ. Modena, 1948, 3: 83–124.
  11. Vernotte P. C. R. Hebd. Séanc. Acad. Sci., 1958, 246, No 22: 3154–3155; La veritable equation de la chaleur, 1958, 247: No 23: 2103–2105.
  12. Landau L. D., Lifshitz E. M. The Classical Theory of Fields of a Course of Theoretical Physics. V. 2: Pergamon Press, 1971.
  13. Luikov A. V. Int. J. Heat Mass Transfer., 1966, 9: 139–152. https://doi.org/10.1016/0017-9310(66)90128-1
  14. Selezov I. T. Cybernetics and Computat. Eng. Kiev: Nauk. Dumka, 1969, Iss. 1: 31–137 (in Russian).
  15. Selezov I. T., Krivonos Yu. G. Mathematical methods in problems of propagation and diffraction of waves, Kyiv: Nauk. Dumka, 2012 (in Russian).