Synthesis of polyhedral oligomeric silsesquioxane containing azobenzene chromophore with hydroxymethylene group in the organic part of the core

TitleSynthesis of polyhedral oligomeric silsesquioxane containing azobenzene chromophore with hydroxymethylene group in the organic part of the core
Publication TypeJournal Article
Year of Publication2016
AuthorsTkachenko, IM, Kobzar, Ya.L, Sidorenko, AV, Shekera, OV, Shevchenko, VV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.08.092
Issue8
SectionChemistry
Pagination92-100
Date Published8/2016
LanguageRussian
Abstract

A method of synthesis of the allyl-containing azobenzene chromophore with a hydroxymethylene group is developed by the reduction of an aldehyde group of 5-[2-phenyldiazene-1-yl]-2-(prop-2-en-1-yloxy)benzaldehyde. Organic-inorganic hybrid nanoparticles containing the azobenzene chromophore with a hydroxymethylene group in the organic part of the core are obtained by the interaction of the synthesized azochromophore with octakis(dimethylsilyloxy)silsesquioxane. The synthesized compounds were characterized by 1H, 13C NMR, IR and UV-vis spectroscopy techniques and can be considered for photoswitches, sensing devices, nonlinear optic and liquid crystal materials.

Keywordsazochromophores, photoisomerization, polyhedral oligomeric silsesquioxane, SIG-groups
References: 
  1. Tanaka K., Chujo Y. J. Mater. Chem., 2012, 22, Iss. 5: 1733–1746. DOI: https://doi.org/10.1039/C1JM14231C
  2. Kuo S. W., Chang F. C. Prog. Polym. Sci., 2011, 36, No 12: 1649–1696. DOI: https://doi.org/10.1016/j.progpolymsci.2011.05.002
  3. Ledin P. A., Tkachenko I. M., Xu W., Choi I., Shevchenko V. V., Tsukruk V. V. Langmuir, 2014, 30, No 29: 8856-8865. DOI: https://doi.org/10.1021/la501930e, PMid:25010498
  4. Chi H., Mya K. Y., Lin T., He C., Wang F., Chin W. S. New J. Chem., 2013, 37, No 3: 735–742. DOI: https://doi.org/10.1039/c2nj40977a
  5. Ke F., Wang S., Guang S., Liu Q., Xu H. Dyes Pigm., 2015, 121: 199–203. DOI: https://doi.org/10.1016/j.dyepig.2015.05.024
  6. Cho H. J., Hwang D. H., Lee J. I., Jung Y. K., Park J. H., Lee J., Lee S. K., Shim H. K. Chem. Mater., 2006, 18, No 16: 3780–3787. DOI: https://doi.org/10.1021/cm061011f
  7. Shevchenko V. V., Sidorenko A. V., Bliznyuk V. N., Tkachenko I. M., Shekera O. V. Polym. Sci. Ser. A., 2013, 55, No 1: 1–31. DOI: https://doi.org/10.1134/S0965545X12100045
  8. Merino E. Chem. Soc. Rev., 2011, 40, No 7: 3835–3853. DOI: https://doi.org/10.1039/c0cs00183j, PMid:21409258
  9. Miniewicz A., Girones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. J. Mater. Chem., C., 2014, 2, Iss. 3: 432–440. DOI: https://doi.org/10.1039/C3TC31791A
  10. Ledin P. A., Russell M., Geldmeier J. A., Tkachenko I. M., Mahmoud M. A., Shevchenko V. V., El-Sayed M. A., Tsukruk V. V. ACS Appl. Mater. Interfaces, 2015, 7, No 8: 4902-4912. DOI: https://doi.org/10.1021/am508993z, PMid:25671557
  11. Li Z., Li Z., Di C., Zhu Z., Li Q., Zeng Q., Zahg K., Liu Y., Ye C., Qin J. Macromolecules, 2006, 39, No 20: 6951–6961. DOI: https://doi.org/10.1021/ma0608875
  12. Parmar N. J., Teraiya S. B., Patel R. A., Talpada N. P. Tetrahedron Lett., 2011, 52, No 22: 2853–2856. DOI: https://doi.org/10.1016/j.tetlet.2011.03.108