Lypoxigenase activity of Salvinia natans (L.) All. in ontogenesis

TitleLypoxigenase activity of Salvinia natans (L.) All. in ontogenesis
Publication TypeJournal Article
Year of Publication2016
AuthorsBabenko, LM, Skaterna, TD, Kosakivska, IV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.08.101
Issue8
SectionBiology
Pagination101-108
Date Published8/2016
LanguageUkrainian
Abstract

The pattern of changes in the lipoxygenase (LOX) activity and the content of dissolved proteins in organs of the annual heterosporous water fern Salvinia natans (L.) All. is identified and studied in ontogenesis for the first time. Floating leaves were revealed to contain 13-LOX with values of pH 8.0, submerged ones — 13-LOX (pHopt 8.0) — at the initial stages and 9-LOX (pHopt 5.5) at the later stages of ontogenesis. In sporocarps, 9-LOX (pHopt 5.5) was identified. As compared to higher plants, vegetative and generative organs of S. natans are characterized by a low content of dissolved proteins. During ontogenesis, the dissolved protein content in floating leaves increases and reaches its maximum at the stage of sporocarp formation, while submerged leaves show some increase in the content of dissolved proteins in the middle of vegetation and its gradual decrease at the end. The pattern of the LOX -activity distribution and the dynamics of changes of the dissolved proteins in the fern organs correspond to physiological processes during the studied stages of ontogenesis.

Keywordsdissolved proteins, lipoxygenase, ontogenesis, Salvinia natans (L.) All.
References: 
  1. Joo Y.-C., Oh D.-K. Biotechnol. Advances, 2012, 30: 1524–1532. DOI: https://doi.org/10.1016/j.biotechadv.2012.04.004, PMid:22537875
  2. Babenko L. M., Kosakivska I. V., Skaterna T. D., Kharchenko O. V. Bull. Kharkiv Nat. Agrar. Univ. Ser. Biol., 2013, Iss. 2: 6–19 (in Ukrainian).
  3. Ivanov I., Heydeck D., Hofheinz K., Roffeis J., O'Donnell V., Kuhn H., Walther M. Arch. Biochem. Biophys., 2010, 503: 161–174. DOI: https://doi.org/10.1016/j.abb.2010.08.016, PMid:20801095
  4. Babenko L. M., Voytenko L. V., Skaterna T. D., Musatenko L. I. Phisiologia rasteniy i genetika, 2014, 46, No 1: 37–44 (in Ukrainian).
  5. Babenko L. M., Sheyko O. A., Kosakivska I. V., Vedenychova N. P., Nehretskiy V. A., Vasheka O. V. Bull. Kharkiv Nat. Agrar. Univ. Ser. Biol., 2015, Iss. 1: 80–103 (in Ukrainian).
  6. Nagalingum N. S., Schneider H., Pryer K. M. Int. J. Plant Sci., 2006, 167: 805–815. DOI: https://doi.org/10.1086/503848
  7. Valledor L., Menéndez V., Canal M. J., Revilla A., Fernández H. Proteomics, 2014, 14: 2061–2071. DOI: https://doi.org/10.1002/pmic.201300166, PMid:25044718
  8. Wen C., Smith R., Banks J. Plant Cell, 1999, 11: 1307–1317. PMid:10402431 PMCid:PMC144282
  9. Radhika V., Kost C., Bonaventure G., David A. Plant Physiol., 2012, 1, No 151: 1130–1138.
  10. Kholodny N. G. On the metamorphosis of plastids hairs underwater leaves of Salvinia natans, Selected works: 3 v., V.1. Work on plant physiology, Kyiv: Publ. AS USSP, 1958 (in Russian).
  11. Gibian M. J., Vandenberg P. Anal. Biochem, 1987, 163, No 2: 343–349. DOI: https://doi.org/10.1016/0003-2697(87)90234-X
  12. Bradford M. M. Anal. Biochem.,1976, 72, No 2: 248–254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
  13. Babenko L. M. Phisiologia rasteniy i genetica, 2015, 47, No 6: 500–513 (in Ukrainian).
  14. Babenko L. M., Kosakivska I. V., Skaterna T. D. Biotechnol. Acta, 2015, 8, No 2: 36–51. DOI: https://doi.org/10.15407/biotech8.02.036
  15. Chehab E. W., Kaspi R., Savchenko T., Rowe H., Negre-Zakharov F., Kliebenstein D., Dehesh K. PLoS One, 2008, 34: 1904–1915. DOI: https://doi.org/10.1371/journal.pone.0001904, PMid:18382679 PMCid:PMC2271129