Information techniques of deep machine learning for the analysis of land cover changes

TitleInformation techniques of deep machine learning for the analysis of land cover changes
Publication TypeJournal Article
Year of Publication2016
AuthorsKussul, NN, Shelestov, AYu., Lavreniuk, MS, Butko, IN
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
SectionInformation Science and Cybernetics
Date Published8/2016

The paper proposes a method and an information technique for the geospatial analysis of land cover changes from long-term satellite observations. Since it is a big data problem, we propose a deep machine learning method for its solution, which is based on a hierarchical neural network model. The method allows solving the wide range of applied problems of the analysis of land cover changes and land use.

Keywordsbig data, deep learning, land cover changes, neural network models
  1. Deng L., Yu D. Foundations and Trends in Signal Processing, 2014, 7, No 3–4: 197–387.
  2. Kussul N., Shelestov A., Basarab R., Skakun S., Kussul O., Lavreniuk M. Geospatial intelligence and data fusion techniques for sustainable development problems, ICT in Education, Research and Industrial Applications: Integration, Harmonization and Knowledge Transfer: Proc. 11th Int. Conf., ICTERI 2015, Lviv, Ukraine, May 14–16, 2015, Publ. CEUR-WS, Vol. 1356: 196–203,
  3. Zgurovsky M. Z., Pankratova N. D. System analysis: problems, methodology, applications, Kyiv: Naukova Dumka, 2005 (in Russian).
  4. Kussul N., Shelestov A., Skakun S., Kravchenko O. International Journal Information Technologies & Knowledge, 2009, 3: 135–156.
  5. Kussul N., Shelestov A., Skakun S., Kravchenko O. International Journal Information Theories & Applications, 2008, 15, No 1: 76–84.
  6. Kussul N., Shelestov A., Skakun S. Intelligent Computations for Flood Monitoring, Advanced Research in Artificial Intelligence, International Book Series "Information Science an Computing"; Book 2, Sofia: Institute of Information Theories and Applications FOI ITHEA, 2008: 48–54.
  7. Haykin S. Neural Networks and Learning Machines, 3rd ed., Upper Saddle River, NJ: Prentice Hall, 2008.
  8. Rachkovskij D. A., Kussul E. M., Baidyk T. N. Biologically Inspired Cognitive Architectures, 2013, 3: 64–86.
  9. Olofsson P., Foody G. M., Herold M., Stehman S. V., Woodcock C. E., Wulder M. A. Remote Sens. Environ., 2014, 148: 42–57.
  10. Skakun S., Basarab R. J. Journal of Automation and Information Sciences, 2014, 46, No 12: 19–26.
  11. Kussul N., Skakun S., Shelestov A., Kravchenko O., Kussul O. International Journal Information Models and Analyses, 2013, 2, 2: 118–122.
  12. Bakan G. M., Kussul N. N. Avtomatica, 1990, No 3: 29–40 (in Russian).
  13. Lavreniuk, M.S., Skakun, S.V., Shelestov, A.J. et al. Cybern Syst Anal (2016) 52: 127 (in Russian).
  14. N. Kussul, G. Lemoine, J. Gallego, S. Skakun, M. Lavreniuk, "Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences", pp. 165-168, 2015.
  15. Kussul N., Skakun S. V., Shelestov A. Ju. Disaster risk analysis based on satellite data. Models and Technologies, Kyiv: Naukova Dumka, 2014 (in Russian).