Title | Information techniques of deep machine learning for the analysis of land cover changes |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Kussul, NN, Shelestov, AYu., Lavreniuk, MS, Butko, IN |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2016.08.026 |
Issue | 8 |
Section | Information Science and Cybernetics |
Pagination | 26-32 |
Date Published | 8/2016 |
Language | Russian |
Abstract | The paper proposes a method and an information technique for the geospatial analysis of land cover changes from long-term satellite observations. Since it is a big data problem, we propose a deep machine learning method for its solution, which is based on a hierarchical neural network model. The method allows solving the wide range of applied problems of the analysis of land cover changes and land use. |
Keywords | big data, deep learning, land cover changes, neural network models |
References:
- Deng L., Yu D. Foundations and Trends in Signal Processing, 2014, 7, No 3–4: 197–387. https://doi.org/10.1561/2000000039
- Kussul N., Shelestov A., Basarab R., Skakun S., Kussul O., Lavreniuk M. Geospatial intelligence and data fusion techniques for sustainable development problems, ICT in Education, Research and Industrial Applications: Integration, Harmonization and Knowledge Transfer: Proc. 11th Int. Conf., ICTERI 2015, Lviv, Ukraine, May 14–16, 2015, Publ. CEUR-WS, Vol. 1356: 196–203, http://ceur-ws.org/Vol-1356/.
- Zgurovsky M. Z., Pankratova N. D. System analysis: problems, methodology, applications, Kyiv: Naukova Dumka, 2005 (in Russian).
- Kussul N., Shelestov A., Skakun S., Kravchenko O. International Journal Information Technologies & Knowledge, 2009, 3: 135–156.
- Kussul N., Shelestov A., Skakun S., Kravchenko O. International Journal Information Theories & Applications, 2008, 15, No 1: 76–84.
- Kussul N., Shelestov A., Skakun S. Intelligent Computations for Flood Monitoring, Advanced Research in Artificial Intelligence, International Book Series "Information Science an Computing"; Book 2, Sofia: Institute of Information Theories and Applications FOI ITHEA, 2008: 48–54.
- Haykin S. Neural Networks and Learning Machines, 3rd ed., Upper Saddle River, NJ: Prentice Hall, 2008.
- Rachkovskij D. A., Kussul E. M., Baidyk T. N. Biologically Inspired Cognitive Architectures, 2013, 3: 64–86. https://doi.org/10.1016/j.bica.2012.09.004
- Olofsson P., Foody G. M., Herold M., Stehman S. V., Woodcock C. E., Wulder M. A. Remote Sens. Environ., 2014, 148: 42–57. https://doi.org/10.1016/j.rse.2014.02.015
- Skakun S., Basarab R. J. Journal of Automation and Information Sciences, 2014, 46, No 12: 19–26. https://doi.org/10.1615/JAutomatInfScien.v46.i12.30
- Kussul N., Skakun S., Shelestov A., Kravchenko O., Kussul O. International Journal Information Models and Analyses, 2013, 2, 2: 118–122.
- Bakan G. M., Kussul N. N. Avtomatica, 1990, No 3: 29–40 (in Russian).
- Lavreniuk, M.S., Skakun, S.V., Shelestov, A.J. et al. Cybern Syst Anal (2016) 52: 127 (in Russian). https://doi.org/10.1007/s10559-016-9807-4
- N. Kussul, G. Lemoine, J. Gallego, S. Skakun, M. Lavreniuk, "Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences", pp. 165-168, 2015. https://doi.org/10.1109/igarss.2015.7325725
- Kussul N., Skakun S. V., Shelestov A. Ju. Disaster risk analysis based on satellite data. Models and Technologies, Kyiv: Naukova Dumka, 2014 (in Russian).