Application of the Boltzmann lattice method to the analysis of nanofluid flow in a curved channel with radial irregularities of the temperature and the concentration of nanoparticles

TitleApplication of the Boltzmann lattice method to the analysis of nanofluid flow in a curved channel with radial irregularities of the temperature and the concentration of nanoparticles
Publication TypeJournal Article
Year of Publication2017
AuthorsAvramenko, AA, Tyrinov, AI, Dmytrenko, NP, Kravchuk, OV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2017.01.052
Issue1
SectionHeat Physics
Pagination52-59
Date Published1/2017
LanguageUkrainian
Abstract

The nanofluid flow in a curved channel formed by two concentric cylindrical surfaces is studied. The flow is caused by a constant azimuthal pressure gradient. The hydrodynamic and thermal characteristics of the flow are investigated. The influence of various factors on the centrifugal instability is studied as well.

Keywordscentrifugal instability, curvilinear channel, heat-mass transfer, nanofluid
References: 
  1. Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Appl. Therm. Eng., 2014, 73, Iss. 1: 391—398. https://doi.org/10.1016/j.applthermaleng.2014.07.070
  2. Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Int. J. Heat Mass Tran., 2015, 82: 316—324. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.059
  3. Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Int. J. Therm. Sci., 2015, 92: 106—118. https://doi.org/10.1016/j.ijthermalsci.2015.01.031
  4. Singh A.K., Raykar V.S. Colloid Polym. Sci., 2008, 286, Iss. 14: 1667—1673. https://doi.org/10.1007/s00396-008-1932-9
  5. Walowit J., Tsao S., Diprima R. J. Appl. Mech., 1964, 31, No 4: 585—593. https://doi.org/10.1115/1.3629718
  6. Mutabazi I., Guillerm R., Prigent A., Lepiller V., Malik S. Flow instabilities in a vertical differentially rotating cylindrical annulus with a radial temperature gradient, EUROMECH Colloquium 525, 2011, https://hal.archives-ouvertes.fr/hal-00600408.
  7. Auser M., Busse F., Gangler, E. Eur. J. Mech., 1996, 15, No 4: 605—618.
  8. Ali M.E., Weidman P.D. J. Fluid Mech., 1990, 220: 53—84. https://doi.org/10.1017/S0022112090003184
  9. Guillerm R., Kang C., Savaro C., Lepiller V. Phys. Fluids., 2015, No 27: 094101. https://doi.org/10.1063/1.4930588
  10. Joni I.M., Panatarani C., Hidayat D., Setianto, Wibawa B.M., Rianto A., Thamrin H. AIP Conf. Proc., 2013, 1554: 20—26, doi; 10.1063.1.4820275.
  11. Barrios G., Rechtman R., Rojas J., Tovar R. J. Fluid Mech., 2005, 522: 91—100. https://doi.org/10.1017/S0022112004001983
  12. Jung M., Choi C., Oh J. J. Nanosci. Nanotechnol., 2011, 11, No 1: 507—510. https://doi.org/10.1166/jnn.2011.3258