Exact solutions of spectral problems for the Schrödinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method

TitleExact solutions of spectral problems for the Schrödinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method
Publication TypeJournal Article
Year of Publication2017
AuthorsMakarov, VL
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2017.02.010
Issue2
SectionMathematics
Pagination10-15
Date Published2/2017
LanguageUkrainian
Abstract

The functionally-discrete method is applied for the first time to derive exact solutions of one-dimensional spect ral problems for the Schrödinger operator with polynomial potential. This numerical-analytical method is capable of obtaining the solution in a closed form (as a result of the limit transition) or approximating the solution to any predescribed accuracy, when the close-form solution is impossible. The results, in particular, can be used to find the ground and excited energy states of anharmonic oscillators and oscillators with the double-well potential.

Keywordsexact eigenvalues, exponentially convergent method, Schrödinger operator, spectral problem
References: 
  1. Magyari, E. (1981). Phys. Lett. A, 81, Iss. 2—3, pp. 116—118. https://doi.org/10.1016/0375-9601(81)90037-2
  2. Banerjee, K. (1978). Proc. R. Soc. Lond. A, No 364, pp. 263—275.
  3. Chaudhuri, R. N., Mondal, M. (1991). Phys. Rev. A, 43, pp. 32—41. https://doi.org/10.1103/PhysRevA.43.3241
  4. Adhikari, R., Dutt, R., Varshni, Y. P. (1989). Phys. Lett. A, 141, Iss. 1—2, pp. 1—8. https://doi.org/10.1016/0375-9601(89)90433-7
  5. Kao, Y.-M., Jiang, T.-F. (2005). Phys. Rev. E, 71, 036702, 7 p.
  6. Roy, A. K., Gupta, N., Deb, V. M. (2001). Phys. Rev. A, 65, No 1, 012109, 7 p.
  7. Heun's. Differential Equations (1995). A., Ronveaux (Ed.). New York: Oxford University Press.
  8. Makarov, V. L. (1991). Dokl. AN SSSR, 320, No 1, pp. 34—39 (in Russian).
  9. Makarov, V. L. (1997). J. Somr. and Appl. Math., No 82, pp. 69—74 (in Ukrainian).
  10. NIST Handbook of Mathematical Functions (2010). F. W. J., Olver, D. W., Lozier, R. F., Boisvert, C. W., Clare (Eds.). New York: Cambridge Univ. Press, http://dlmf.nist.gov.
  11. Bateman, H., Erdëlyi, A. (1974). Higder transcendental functions, Vol. 2. Moscow: Nauka (in Russian).
  12. Makarov, V. L., Romanyuk, N. M. Reports of the National Academy of Sciences of Ukraine, 2014, 2: 26—31 (in Ukrainian). https://doi.org/10.15407/dopovidi2014.02.026
  13. Makarov, V. L. Reports of the National Academy of Sciences of Ukraine, 2015, 11: 5—11 (in Ukrainian). https://doi.org/10.15407/dopovidi2015.11.005