Title | Exact solutions of spectral problems for the Schrödinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method |
Publication Type | Journal Article |
Year of Publication | 2017 |
Authors | Makarov, VL |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2017.02.010 |
Issue | 2 |
Section | Mathematics |
Pagination | 10-15 |
Date Published | 2/2017 |
Language | Ukrainian |
Abstract | The functionally-discrete method is applied for the first time to derive exact solutions of one-dimensional spect ral problems for the Schrödinger operator with polynomial potential. This numerical-analytical method is capable of obtaining the solution in a closed form (as a result of the limit transition) or approximating the solution to any predescribed accuracy, when the close-form solution is impossible. The results, in particular, can be used to find the ground and excited energy states of anharmonic oscillators and oscillators with the double-well potential. |
Keywords | exact eigenvalues, exponentially convergent method, Schrödinger operator, spectral problem |
References:
- Magyari, E. (1981). Phys. Lett. A, 81, Iss. 2—3, pp. 116—118. https://doi.org/10.1016/0375-9601(81)90037-2
- Banerjee, K. (1978). Proc. R. Soc. Lond. A, No 364, pp. 263—275.
- Chaudhuri, R. N., Mondal, M. (1991). Phys. Rev. A, 43, pp. 32—41. https://doi.org/10.1103/PhysRevA.43.3241
- Adhikari, R., Dutt, R., Varshni, Y. P. (1989). Phys. Lett. A, 141, Iss. 1—2, pp. 1—8. https://doi.org/10.1016/0375-9601(89)90433-7
- Kao, Y.-M., Jiang, T.-F. (2005). Phys. Rev. E, 71, 036702, 7 p.
- Roy, A. K., Gupta, N., Deb, V. M. (2001). Phys. Rev. A, 65, No 1, 012109, 7 p.
- Heun's. Differential Equations (1995). A., Ronveaux (Ed.). New York: Oxford University Press.
- Makarov, V. L. (1991). Dokl. AN SSSR, 320, No 1, pp. 34—39 (in Russian).
- Makarov, V. L. (1997). J. Somr. and Appl. Math., No 82, pp. 69—74 (in Ukrainian).
- NIST Handbook of Mathematical Functions (2010). F. W. J., Olver, D. W., Lozier, R. F., Boisvert, C. W., Clare (Eds.). New York: Cambridge Univ. Press, http://dlmf.nist.gov.
- Bateman, H., Erdëlyi, A. (1974). Higder transcendental functions, Vol. 2. Moscow: Nauka (in Russian).
- Makarov, V. L., Romanyuk, N. M. Reports of the National Academy of Sciences of Ukraine, 2014, 2: 26—31 (in Ukrainian). https://doi.org/10.15407/dopovidi2014.02.026
- Makarov, V. L. Reports of the National Academy of Sciences of Ukraine, 2015, 11: 5—11 (in Ukrainian). https://doi.org/10.15407/dopovidi2015.11.005