Support effect on the catalytic activity of palladium nanoparticles in the o-nitrotoluene hydrogenation

TitleSupport effect on the catalytic activity of palladium nanoparticles in the o-nitrotoluene hydrogenation
Publication TypeJournal Article
Year of Publication2017
AuthorsKalishyn, YY, Ordynskyi, VV, Bychko, IB, Kaidanovych, ZV, Trypolskyi, AI, Strizhak, PE
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published3/2017

The catalytic activity of nanocomposite materials with palladium nanoparticles deposited from a colloidal solution on activated carbon, nitrogen-containing carbon nanotubes, graphite, and γ-Al2O3 in the o-nitrotoluene hydrogenation is studied. A significant effect of the carbon support nature on the catalyst activity is found. It is shown that the highest activity is revealed by colloidal palladium. In the case of supports strongly interacting with reaction products, the catalytic activity of supported catalysts significantly reduces.

Keywordshydrogenation of ethylene, nanoparticles of palladium, size effect
  1. Blondet, F. R., Vincent, T., Guibal, E. (2008). Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: catalyst characterization and influence of operative parameters studied by experimental design methodology. Int. J. Biol. Macromol., 43, Iss. 1, pp. 69-78.
  2. Acton, Q. A. (2013). Advances in Toluene Research and Application. Atlanta: Scholarly Editions.
  3. Hansen, P. L., Wagner, J. B., Helveg, S., Rostrup-Nielsen, J. R., Clausen, B. S. & Topsoe. H. (2002). Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals. Science, 295, Iss. 5562, pp. 2053-2055.
  4. Wu, Z., Chen, J. & Di, Q., Zhang, M. (2012). Size-controlled synthesis of a supported Ni nanoparticle catalyst for selective hydrogenation of p-nitrophenol to p-aminophenol. Catal. Commun., 18, pp. 55-59.
  5. Kim, H., Lim., S. C. & Lee, Y. H. (2011). Size effect of two-dimensional thermal radiation. Phys. Lett. A., 375, Iss. 27, pp. 2661-2664.
  6. Borodzinski, A. & Cybulski, A. (2000). The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits. Appl. Catal. A-Gen., 198, Iss. 1-2, pp. 51-66.
  7. Yen, P. W. & Chou, T. C. (2000). Temperature programmed oxidation of palladium catalyst: effect of support on the oxygen adsorption behavior. Appl. Catal. A-Gen., 198, Iss. 1-2, pp. 23-31.
  8. Toebes, M. L., van Dillen, J. A. & de Jong K. P. (2001). Synthesis of supported palladium catalysts. J. Mol. Catal. A-Chem., 173, Iss. 1-2, pp. 75-98.
  9. Rodriguez-Reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36, Iss. 3, pp. 159-175.
  10. Roth, D., Celin, P., Kaddouri, A., Garbowski, E., Primet, M. & Tena, E. (2006). Oxidation behaviour and catalytic properties of Pd/Al2O3 catalysts in the total oxidation of methane. Catal. Today, 112, Iss. 1-4, pp. 134-138.
  11. Pisanu, A. M., Gigola, C. E. (1999). NO decomposition and NO reduction by CO over Pd/α-Al2O3. Appl. Catal. B-Environ., 20, Iss. 3, pp. 179-189.
  12. Ng, Y. H., Ikeda, S., Harada, T. et al. (2008). High Sintering Resistance of Platinum Nanoparticles Embedded in a Microporous Hollow Carbon Shell Fabricated Through a Photocatalytic Reaction. Langmuir. 24, Iss. 12, pp. 6307-6312.
  13. Xiong Y., Chen, J., Wiley, B., Xia, Y. & Yin, Y. (2005). Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size. J. Am. Chem. Soc., 127, Iss. 20, pp. 7332-7333.
  14. Grace, A. N. & Pandian, K. (2007). One pot synthesis of polymer protected Pt, Pd, Ag and Ru nanoparticles and nanoprisms under reflux and microwave mode of heating in glycerol-A comparative study. Mat. Chem. Phys., 104, Iss. 1, pp. 191-198.
  15. Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32, Iss. 5, pp. 759-769.