Hybrid porous polymers based on derivatives of polyvinyl alcohol and acrylic hydrogels

TitleHybrid porous polymers based on derivatives of polyvinyl alcohol and acrylic hydrogels
Publication TypeJournal Article
Year of Publication2017
AuthorsSamchenko, Yu.M, Kernosenko, LO, Kryklya, SO, Pasmurtseva, NO, Poltoratska, TP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published7/2017

Methods of synthesis of hybrid materials based on the sponge-like acetals of polyvinyl alcohol with the pore space which are partially impregnated by functional pH- and temperature-sensitive hydrogels (based on acrylic acid and N-isopropylacrylamide) have been developed, and their physicochemical properties (tensile strength and elasticity, sorption capacity, degree and rate of swelling) have been investigated. The synergistic improvement of properties of hybrid hydrogels in comparison with the components, from which they are constructed, is demonstrated, and the possibility of using these materials for the separation, removal, and concentration of dyes from polluted wastewaters is shown.

Keywordsacrylic acid, dyes, functional hydrogels, hybrid polymers, N-isopropylacrylamide, polyvinyl alcohol, sorption, wastewater treatment
  1. Lee, K. & Mooney, D. (2001). Hydrogels for tissue engineering. Chem. Rev., 101, pp. 1869-1879 https://doi.org/10.1021/cr000108x
  2. Qiu, Y. & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 53, pp. 321-339. https://doi.org/10.1016/S0169-409X(01)00203-4
  3. Dong, L., Agarwal, A., Beebe, D. & Jiang, H. (2006). Adaptive liquid microlenses activated by stimuli responsive hydrogels. Nature, 442, pp. 551-554. https://doi.org/10.1038/nature05024
  4. Discher D., Mooney D. & Zandstra P. (2009). Growth factors, matrices, and forces combine and control stemcells. Science, 324, pp. 1673-1677. https://doi.org/10.1126/science.1171643
  5. Balakrishnan, B. & Banerjee, R. (2011). Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev., 111, pp. 4453-4457. https://doi.org/10.1021/cr100123h
  6. Calvert, P. (2009). Hydrogels for soft machines. Adv. Mater., 21, pp. 743-756. https://doi.org/10.1002/adma.200800534
  7. Lake, G. & Thomas, A. (1967). The strength of highly elastic materials. Proc. R. Soc. A., 300, pp. 108-119. https://doi.org/10.1098/rspa.1967.0160
  8. Jing, G., Wang, Li, Yu, H., Amer, W. A. & Zhang, L. (2013). Recent progress on study of hybrid hydrogels for water treatment. Colloid. Surfaces A, 416, pp. 86-89. https://doi.org/10.1016/j.colsurfa.2012.09.043
  9. Liu, Y. & Choi, H. (2013). Recent progress in smart polymer composite particles in electric and magnetic fields. Polym. Int., 62, pp. 147-151. https://doi.org/10.1002/pi.4441
  10. Rao, P., Lo, I. M., Yin, K. & Tang, S. C. (2011). Removal of natural organic matter by cationic hydrogel with magnetic properties. J. Environ. Manage, 92, pp. 1690-1695. https://doi.org/10.1016/j.jenvman.2011.01.028
  11. Yun, J., Jin, D., Lee, Y. & Kim, H. (2010). Photocatalytic treatment of acidic waste water by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2. Mater. Lett., 64, pp. 2431-2434. https://doi.org/10.1016/j.matlet.2010.08.001
  12. Malaviya, P. & Singh, A. (2011). Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Crit. Rev. Env. Sci. Tech., 41, pp. 1111-1172. https://doi.org/10.1080/10643380903392817
  13. Kryklya, S., Samchenko, Yu., Konovalova, V., Poltoratsky, T., Pasmurtseva, N. & Ulberg, Z. (2016). Hybrid pH and thermosensitive hydrogels based on polyvinyl alcohol and acrylic monomers. Magisterium. Chem. Sci., 63, pp. 20-28.
  14. Samchenko, Yu., Ulberg, Z. & Korotych, O. (2011). Multipurpose smart hydrogel systems. Adv. Colloid Interface Sci., 168, No. 1–2, pp. 247-262 https://doi.org/10.1016/j.cis.2011.06.005
  15. Haraguchi, K., Takehisa, T. & Fan, S. (2002). Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay. Macromolecules, 35, pp. 10162-10171. https://doi.org/10.1021/ma021301r