Integer solutions for a vector implicit linear difference equation in ZN

TitleInteger solutions for a vector implicit linear difference equation in ZN
Publication TypeJournal Article
Year of Publication2018
AuthorsGefter, SL, Goncharuk, AB, Piven', AL
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published11/2018
A criterion of the existence and the uniqueness for an integer solution of the implicit linear difference equation $Ax_{n+1} + Bx_{n} = f_{n}$, where $A$ and $B$ are matrices with integer entries, is proved. Sufficient conditions of the uniqueness for an integer solution of this equation are obtained.
Keywordsimplicit difference equation, integer solution
  1. Baskakov, A. G. (2001). On the invertibility of linear difference operators with constant coefficients. Russ. Math., 45, No. 5, pp. 1-9.
  2. Benabdallakh, M., Rutkas, A. G. & Solov'ev, A. A. (1990). Application of asymptotic expansions to the investigation of an infinite system of equations Axn+1 + Bxn = fn in a Banach space. J. Sov. Math., 48, Iss.2, pp. 124-130. doi:
  3. Gorodnii, M. F. (1991). Bounded and periodic solutions of a difference equation and its stochastic analogue in Banach space. Ukr. Math. J., 43, Iss. 1, pp. 32-37. doi:
  4. Slusarchuk, V. E. (2003) Stability of solutions of difference equations in a Banach space. Rivne: Vyd-vo UDUVHP (in Ukrainian).
  5. Bernhard, P. (1982). On singular implicit linear dynamical systems. SIAM J. Control Optim., 20, No. 5, pp. 612-633. doi:
  6. Gefter, S. L. & Piven, A. L. (2017). Implicit linear difference equation in Frechet spaces. Dopov. Nac. akad. nauk. Ukr., No. 6, pp. 3-8 (in Russian). doi:
  7. Gantmakher, F. R. (1966). The theory of matrices. Moscow: Nauka (in Russian).
  8. Leont'ev, A. F. (1983). Entire functions. Series of exponents. Moscow: Nauka (in Russian).
  9. Buck, R. C. (1948) Integral valued entire functions. Duke Math. J., No. 4, pp. 879-891. doi:
  10. Katok, S. B. (2004). p-adic analysis compared with real. Moscow: MCNMO (in Russian).
  11. Berestovskii, V. N. & Nikonorov, Yu. G. (2007). Continued fractions, the group GL(2, ℤ), and Pisot numbers. Sib. Adv. Math., 17, No. 4, pp. 268-290. doi: