Title | Hierarchical block model for seismic processes |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Mykulyak, SV |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2018.11.055 |
Issue | 11 |
Section | Geosciences |
Pagination | 55-62 |
Date Published | 11/2018 |
Language | Ukrainian |
Abstract | The model based on cellular automata is constructed with regard for two fundamental properties of seismically active areas: a hierarchical block structure and their existence in a state of self-organized criticality. The model reproduces the main empirical properties of seismic processes: the frequency-energy invariance of seismic events (the Gutenberg—Richter law), generalized Omori law for aftershocks, and fractal distribution of hypocenters (epicenters) with power-law dependences of the number of events on distances between hypocenters (epicen ters). |
Keywords | block hierarchical medium, seismic process, self-organized criticality |
References:
- Sadovskiy, M. A., Bolhovitinov, L. G. & Pisarenko, V. F. (1982). On the properties of the discreteness of rocks. Izv. AN SSSR. Fiz. Zemli ,12, No. 3, pp. 3-18 (in Russian).
- Gutenberg, B. & Richter, C. F. (1949). Seismicity of the Earth and associated phenomena. Princeton: Princeton Univ. Press.
- Utsu, T. (1969). Aftershocks and earthquake statistics (I): some parameters which characterize an aftershock sequence and their interrelations. Geophysics, 3, No. 3, pp. 129-195.
- Robertson, M. C., Sammis, C. G., Sahimi, M. & Martin, A. J. (1995). Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation. J. Geophys. Res., 100, No. B1, pp. 609-620. doi: https://doi.org/10.1029/94JB02463
- Shcherbakov, R., Aalsburg, J. V., Rundle, J. B. & Turcotte, D. L. (2006). Correlations in aftershock and seismicity patterns. Tectonophysics, 413, pp. 53-62. doi: https://doi.org/10.1016/j.tecto.2005.10.009
- Bak, P., Tang, C. & Wiesenfeld, K. (1988). Self-organized criticality. Phys. Rev. A, 38, No. 1, pp. 364-374. doi: https://doi.org/10.1103/PhysRevA.38.364
- Bak, P. & Tang, C. (1989). Earthquakes as a self-organized critical phenomenon. J. Geophys. Res., 94, No. 11, pp. 15635–15637. doi: https://doi.org/10.1029/JB094iB11p15635
- Ito, K. & Matsuzaki, M. (1990). Earthquakes as self-organized critical phenomena. J. Geophys. Res., 95, No. B5, pp. 6853–6860. doi: https://doi.org/10.1029/JB095iB05p06853
- Olami, Z., Feder, H. J. S. & Christensen, K. (1992). Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett., 68, No. 8, pp. 1244-1247. doi: https://doi.org/10.1103/PhysRevLett.68.1244
- Burridge, R. & Knopoff, L. (1967). Model and theoretical seismicity. Bull. Seismol. Soc. Am., 57, pp. 341-371.
- Rundle, J. B. & Jackson, D. D. (1977). Numerical simulation of earthquake sequences. Bull. Seismol. Soc. Am., 67, No. 5, pp. 1363-1377. doi: https://doi.org/10.1007/BF01329869
- Barriere, B. & Turcotte, D. L. (1994). Seismicity and self-organized criticality. Phys. Rev. E, 49, pp. 1151-1160. doi: https://doi.org/10.1103/PhysRevE.49.1151
- Dominguez, R., Tiampo, K. F., Serino, C. A. & Klein, W. (2013). Scaling of earthquake models with in homogeneous stress dissipation. Phys. Rev. E, 87, 022809. doi: https://doi.org/10.1103/PhysRevE.87.022809
- Kagan, Y. Y. (2007). Earthquake spatial distribution: the correlation dimension. Geophys. J. Int., 168, pp. 1175-1194. doi: https://doi.org/10.1111/j.1365-246X.2006.03251.x
- Grassbergerg, P. & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9, No. 1-2, pp. 189-208. doi: https://doi.org/10.1016/0167-2789(83)90298-1