Title | Convergence of inertial hybrid splitting algorithms |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Semenov, VV |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2018.12.030 |
Issue | 12 |
Section | Information Science and Cybernetics |
Pagination | 30-36 |
Date Published | 12/2018 |
Language | Russian |
Abstract | Two new algorithms for solving the operator inclusion problems with maximal monotone operators acting in a Hilbert space are proposed. Algorithms are based on the inertial extrapolation and three well-known methods: Tseng forward-backward splitting algorithm and two hybrid algorithms for the approximation of fixed points of nonexpansive operators. Theorems on the strong convergence of the sequences generated by the algorithms are proved. |
Keywords | Hilbert space, hybrid algorithm, inertial method, maximal monotone operator, operator inclusion problem, strong convergence, Tseng algorithm |
References:
- Bauschke, H. H. & Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Berlin etc.: Springer. doi: https://doi.org/10.1007/978-1-4419-9467-7
- Tseng, P. (2000). A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control and Optimization, 38, pp. 431-446. doi: https://doi.org/10.1137/S0363012998338806
- Semenov, V. V. (2014). Hybrid Splitting Methods for the System of Operator Inclusions with Monotone Operators. Cybernetics and Systems Analysis, 50, pp. 741-749. doi: https://doi.org/10.1007/s10559-014-9664-y
- Semenov, V. V. (2014). A Strongly Convergent Splitting Method for Systems of Operator Inclusions with Monotone Operators. J. Automation and Information Sciences, 46, No. 5, pp. 45-56. doi: https://doi.org/10.1615/JAutomatInfScien.v46.i5.40
- Alvarez, F. & Attouch, H. (2001). An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal., 9, pp. 3-11. doi: https://doi.org/10.1023/A:1011253113155
- Attouch, H., Chbani, Z. & Riahi, H. (2018). Combining fast inertial dynamics for convex optimization with Tikhonov regularization. J. Math. Anal. Appl., 457, pp. 1065-1094. doi: https://doi.org/10.1016/j.jmaa.2016.12.017
- Dong, Q. L., Lu, Y. Y. & Yang, J. (2016). The extragradient algorithm with inertial effects for solving the variational inequality. Optimization, 65, pp. 2217-2226. doi: https://doi.org/10.1080/02331934.2016.1239266
- Dong, Q. L., Yuan, H. B., Cho, Y. J. & Rassias, Th. M. (2018). Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett., 12, No. 1, pp. 87-102. doi: https://doi.org/10.1007/s11590-016-1102-9
- Lorenz, D. & Pock, T. (2015). An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging and Vision, 51, pp. 311-325. doi: https://doi.org/10.1007/s10851-014-0523-2
- Nakajo, K. & Takahashi, W. (2003). Strong convergence theorems for nonexpansive mappings and no nexpansive semigroups. J. Math. Anal. Appl., 279, pp. 372-379. doi: https://doi.org/10.1016/S0022-247X(02)00458-4
- Takahashi, W., Takeuchi, Y., & Kubota, R. (2008). Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl., 341, pp. 276-286. doi: https://doi.org/10.1016/j.jmaa.2007.09.062
- Verlan, D. A., Semenov, V. V. & Chabak, L. M. (2015). A Strongly Convergent Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators. J. Automation and Information Sciences, 47, No. 7, pp. 31-46. doi: https://doi.org/10.1615/JAutomatInfScien.v47.i7.40
- Denisov, S. V., Semenov, V. V. & Chabak, L. M. (2015). Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators. Cybernetics and Systems Analysis, 51, pp. 757-765. doi: https://doi.org/10.1007/s10559-015-9768-z