Improvement of the structure and mechanical characteristics of structural intermetallides of the titanium-aluminium system at the directional solidification

TitleImprovement of the structure and mechanical characteristics of structural intermetallides of the titanium-aluminium system at the directional solidification
Publication TypeJournal Article
Year of Publication2018
AuthorsLobanov, LM, Asnis, EA, Piskun, NV, Statkevich, II
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2018.12.051
Issue12
SectionMaterials Science
Pagination51-60
Date Published12/2018
LanguageRussian
Abstract

The paper presents the results of investigation of the processes of structure formation and the mechanical properties at the directional solidification of a β-stabilized intermetallic alloy of the titanium-aluminium systems. It is shown that the use of the directional solidification at a crucibleless induction zone melting produces a specific microstructure of alloy Ti-44Al-5Nb-3Cr-1.5Zr (at. %). It is established that the thermal gradient and the rate of solidification in the directional crystallization are the basic thermodynamic tools that make it possible to form an ordered microstructure. Investigations showed that, at the speed of 150 mm/h, the temperature gradient reaches 300 C · cm–1. This leads to the ordering and orientation of the secondary phase microstructure of the material and to the improvement of its physico-mechanical properties. Regulation of the microstructure allows an essential improvement of the high-temperature mechanical properties, namely ultimate strength, Young's modulus, and creep resistance. The results showed that the temperature limit of the structural applicability of alloys of this type can be expanded from 750-800 °C up to 900-950 °C.

Keywordsdirectional solidification, intermetallide, mechanical characteristics, structure, zone melting
References: 
  1. Kablov, E. N. & Lukin, V. I. (2008). Titanium- and nickel-based intermetallides for details of the new technique. Automatic welding, No. 11, pp. 76-82.
  2. Bochvar, G. A. & Salenkov, V. A. (2004). Study of alloys on the basis of titanium aluminide with ortho rhombic structures. The technology of light alloys, No. 4, pp. 44-46.
  3. Kumpfert, J. & Kaysser, W. A. (2001). Orthorhombic titanium aluminides: phases, phase transformations and microstructure evolution. International journal of materials research, 82, pp. 128-134.
  4. Imaev, V. M., Imaev, P. M., Hismatulin, T. G. (2008). Mechanical properties of Ti-43Al-7(Nb,Mo)-0.2B (at. %) cast intermetallidic alloy after a thermal treatment. The Physics of Metals and Metallography, 105, No. 5, pp. 516-522.
  5. Povarova, K. B., Bannikh, O. A. & Burov, I. V (1998). Structure and some properties of cast alloys based on TiAl doped with V, Nb, Ta, Hf, Zr. Metals, No. 3, pp. 31-41.
  6. Povarova, K. B. & Bannikh, O. A. (1999). Principles of the construction of structural alloys on the basis of intermetallides (Part I). Mater. Sci., No. 3, pp. 27-33.
  7. Chen, G. L., Wang, J. G., Ni, X. D. et al. (2005). A new intermetallic compound in TiAl+Nb composition area of the Ti-Al-Nb ternary system. Intermetallics, 13, pp. 329-336. doi: https://doi.org/10.1016/j.intermet.2004.07.006
  8. Asnis, E. A., Piskun, N. V. & Statkevich, I. I. (2017). Regulation of the structure and phase composition of titanium aluminides produced by zone melting. Dopov. Nac. acad. nauk Ukr, No. 6, pp. 36-45. doi: https://doi.org/10.15407/dopovidi2017.06.036
  9. Ganina, S. M., Ginkin, V. P. & Chernov, K. G. (2014). Mathematical model of heat and mass transfer in the zone-free zone melting of TiAl / SM intermetallides. Problems of Atomic Science and Technology. Ser. Mathematical modeling of physical processes, Iss. 4, pp. 35-43.
  10. Lapin, J. & Gabalkova, Z. (2011). Solidification behavior of TiAl-based alloys studied by directional solidification technique. Intermetallics, 19, No. 6, pp. 797-804. doi: https://doi.org/10.1016/j.intermet.2010.11.021
  11. Kartavykh, A. V., Asnis, E. A., Piskun, N. V. et al. (2016). A promising microstructure/deformability adjustment of β-stabilized γ-TiAl intermetallics. Mater. Lett., 162, pp. 180-184. doi: https://doi.org/10.1016/j.matlet.2015.09.139
  12. Kartavykh, A. V., Asnis, E. A., Piskun, N. V. et al. (2015). Microstructure and mechanical properties control of γ-TiAl(Nb,Cr,Zr) intermetallic alloy by induction float zone processing. J. Alloy. Compd., 643, S182—S186. doi: https://doi.org/10.1016/j.jallcom.2014.12.210
  13. Rostamian, A. & Jacot, A. (2008). A numerical model for the description of the lamellar and massive pha se transformations in TiAl alloys. Intermetallics, 16, pp. 1227-1236. doi: https://doi.org/10.1016/j.intermet.2008.07.008
  14. Appel, F., Paul, J. D. H. & Oering, M. (2011). Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: WILEY-VCH. 762 p. doi: https://doi.org/10.1002/9783527636204
  15. Schwaighofe, E., Clemens, H., Mayer, S. et al. (2014). Microstructural design and mechanical properties of a cast and heattreated intermetallic multi-phase γ-TiAl based alloy. Intermetallics, 44, pp. 128-140. doi: https://doi.org/10.1016/j.intermet.2013.09.010