Changes in the levels of vitamin D receptor and active form of the nuclear factor κB in bone tissue of rats with experimental type 1 diabetes mellitus and their correction with cholecalciferol

TitleChanges in the levels of vitamin D receptor and active form of the nuclear factor κB in bone tissue of rats with experimental type 1 diabetes mellitus and their correction with cholecalciferol
Publication TypeJournal Article
Year of Publication2018
AuthorsMazanova, AO, Shymanskyi, IO, Lisakovska, OO, Vasylevska, VM, Lototska, OYu., Makarova, OO, Veliky, MM
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published2/2018

It has been shown that chronic hyperglycemia, caused by the development of experimental type 1 diabetes mellitus (DM 1), leads to a significant decrease in the blood serum level of 25OHD. Vitamin D3 deficiency in rats with DM 1 is accompanied by the impaired signaling of calcitriol in bone tissue, as is evident from a decrease in the expression of the vitamin D3 receptor protein (VDR). The elevated level of nuclear factor κB (NF-κB) subunit p65 phosphorylated at Ser 311 in bone tissue is found. This may contribute to an increase in osteoclastogenesis. Supplementation of cholcalciferol (vitamin D3) to rats with DM 1 leads to a normalization of 25OHD in blood serum, which can result in the restoration of the osteoblastic-osteoclastic balance in bone tissue.

Keywordsnuclear factor-κB, osteoporosis, type 1 diabetes mellitus, vitamin D receptor, vitamin D3 (cholecalciferol)
  1. Cooper, J. D., Smyth, D. J, Walker, N. M, Stevens, H., Burren, O. S, Wallace, C., Greissl, C., Ramos-Lopez, E., Hyppönen, E., Dunger, D. B., Spector, T. D., Ouwehand, W. H., Wang, T. J., Badenhoop, K. & Todd, J. A. (2011). Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. No. 5, rr. 1624-1631. doi:
  2. Poudyal, H. & Brown, L. (2013). Osteoporosis and its association with non-gonadal hormones involved in hypertension, adiposityand hyperglycaemia. Curr. Drug. Targets. No. 14, pp. 1694-1706. doi:
  3. Saccone, D., Asan,i F. & Bornman, L. (2015). Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene, No. 2, pp. 171-180. doi:
  4. Lin, Z., Chen, H., Belorusova, A. Y., Bollinger, J. C., Tang, E. K. Y., Janjetovic, Z., Kim, T., Wu, Z., Miller, D. D., Slominski, A. T., Postlethwaite, A. E., Tuckey, R. C., Rochel, N. & Li, W. (2017). 1α,20S-Dihy droxyvitamin D3 interacts with vitamin D receptor: Crystal structure and route of chemical synthesis. Sci Rep., No. 1, pp. 1-10. doi:
  5. Tai, K., Need, A. G., Horowitz, M. & Chapman, I. M. (2008). Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition., No. 24, pp. 279-285. doi:
  6. Dhaon, P. & Shah, V. N. (2014). Type 1 diabetes and osteoporosis: A review of literature. Indian J. Endocrinol. Metab., No. 18, pp. 159-165. doi:
  7. Coe, L. M., Irwin, R., Lippner, D. & McCabe, L. R. (2011). The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J. Cell. Physiol., No. 2, pp. 477-483. doi:
  8. Romeo, G., Liu, W. H., Asnaghi, V., Kern, T. S. & Lorenzi, M. (2002). Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes, No. 7, pp. 2241-2248. doi:
  9. Abu-Amer, Y. (2013). NF-κB signaling and bone resorption. Osteoporos. Int., No. 9, pp. 2377-2386. doi:
  10. Riccio, P., Rossano, R., Larocca, M., Trotta, V., Mennella, I. & Vitaglione, P. (2016). Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study. Exp. Biol. Med. (Maywood), No. 6, pp. 620-635. doi:
  11. Mazanova, A. O. Shymanskyy, I. O. & Veliky, M.M. (2016). Development and validation of immunoenzyme test-system for determination of 25-hydroxyvitamin D in blood serum. Biotechnol. Acta., No. 2, pp. 28-36. doi:
  12. Wang, Y., Zhu, J. & Deluca, H. F. (2014). Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. J. Bone. Miner. Res., No. 3, pp. 685-692. doi:
  13. Mutt, S. J., Karhu, T., Lehtonen, S., Lehenkari, P., Carlberg, C., Saarnio, J., Sebert, S., Hyppönen, E., Järve lin, M. R. & Herzig, K. H. (2012). Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D3 via the NF-κB pathway. FASEB J., No. 11, pp. 4400-4407. doi:
  14. Brendan, F. B., Zhenqiang, Y. & Lianping, X. (2010). Functions of NF-κB in Bone. Ann. N. Y. Acad. Sci., No. 1192, pp. 367-375. doi:
  15. Moscat, J. & Diaz-Meco, M. T. (2011) Fine tuning NF-κB: new openings for PKC-ζ. Nat. Immunol., No. 1, pp. 12-14. doi: