Molecular profiling of prostate tumors

TitleMolecular profiling of prostate tumors
Publication TypeJournal Article
Year of Publication2018
AuthorsGerashchenko, GV, Rynditch, AV, Kashuba, VI
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published6/2018

We have detected the relative gene expression levels (RE) of 56 genes in prostate adenocarcinomas (T), paired conventionally normal tissues (N), and adenomas (A). We have found 30 differential expressed genes in T compa red with A. Among them, there were cancer-related and prostate specific genes (AR, KRT18, MMP9, PTEN, TMPRSS2: ERG, VIM, ESR1, GCR, PDL1, PRLR, SRD5A2, VDR), 3 genes of lncRNA (PCA3, SCHLAP1, HOTAIR), several genes characterizing the state of a tumor microenvironment (fibroblasts, lymphocytes, macrophages) (THY1, CXCL12, CXCL14, CTGF, HIF1A, FAP, IFNB1, CTLA4, IL1RL1, IL1R1, CD163, CCR4, CCL17, CCL22, NOS2A). It is found that 29 of 56 genes have significant RE correlations in T with clinical and pa thological characteristics (Gleason score, stage, PSA level, age). The obtained results are the basis for the prostate tumors molecular profiling.

Keywordsprostate tumors, relative gene expression, tumor microenvironment, tumor molecular characteristics
  1. Cancer Genome Atlas Research Network. (2015). The molecular taxonomy of primary prostate cancer. Cell., 163, No. 4, pp. 1011-1125. doi:
  2. Dmitriev, A. A., Rosenberg, E. E., Krasnov, G. S., Gerashchenko, G. V., Gordiyuk, V. V., Pavlova, T. V., Kudryavtseva, A. V., Beniaminov A. D., Belova, A. A., Bondarenko, Y. N., Danilets, R. O., Glukhov, A. I., Kon dratov, A. G., Alexeyenko, A., Alekseev, B. Y., Klein, G., Senchenko, V. N. & Kashuba, V. I. (2015). Identification of novel epigenetic markers of prostate cancer by notI-microarray analysis. Dis. Markers., 2015, 241301, 13 pp. doi:
  3. Hanahan, D. & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, No. 5, pp. 646-674. doi:
  4. Pickup, M. W., Mouw, J. K. & Weaver, V. M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Rep., 15, No. 12, pp. 1243-1253. doi:
  5. Gerashchenko, G. V., Mankovska, O. S., Dmitriev, A. A., Mevs, L. V., Rosenberg, E. E., Pikul, M. V., Marynychenko, M. V., Gryzodub, O. P., Stakhovsky, E. O. & Kashuba, V. I. (2017). Expression of epithelialmesenchymal transition-related genes in prostate tumours. Biopolym. Cell, 33, No. 5, pp. 335-355. doi:
  6. Strasner, A. & Karin, M. (2015). Immune infiltration and prostate cancer. Front Oncol., No. 5, 128. doi:
  7. Shiga, K., Hara, M., Nagasaki, T., Sato, T., Takahashi, H. & Takeyama, H. (2015). Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers, 7, No. 4, pp. 2443-2458. doi:
  8. Maolake, A., Izumi, K., Shigehara K., Natsagdorj, A., Iwamoto, H., Kadomoto, S., Takezawa, Y., Machioka, K., Narimoto, K., Namiki, M., Lin, W. J., Wufuer, G. & Mizokami, A. (2017). Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget, 8, No. 6, pp. 9739-9751. doi:
  9. Mevs, L. V., Gerashchenko, G. V., Rosenberg, E. E., Pikul, M. V., Marynychenko, M. V., Gryzodub, O. P., Vozianov, S. O., Stakhovsky, E. A. & Kashuba, V.I. (2017). Detection of prostate specific ETS fusion transcripts in cancer samples. Biopolym. Cell., 33. No. 4, pp. 256-267. doi:
  10. Rosenberg, E. E., Gerashchenko, G. V., Hryshchenko, N. V., Mevs L. V., Nekrasov, K. A., Lytvynenko, R. A., Vitruk, Y. V., Gryzodub, O. P., Stakhovsky, E. A. & Kashuba, V. I. (2017). Expression of cancer-associated genes in prostate tumors. Exp. Oncol., 39, No. 2, pp. 131-137.