Late-epigenetic framboidal pyrites in deep-lying reservoirs of gas-condensate pools

TitleLate-epigenetic framboidal pyrites in deep-lying reservoirs of gas-condensate pools
Publication TypeJournal Article
Year of Publication2018
AuthorsLukin, AE, Gafich, IP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published8/2018

The presence of framboidal pyrites within the pore space of deep-lying (4500-6500 m) secondary reservoirs of gas-condensate pools has been found. It belongs to the terminal late-epigenetic mineral new formations. This is not only the sign of specific tectonophysical and geothermobaric conditions at great depths, but the indicator of the processes of self-cleaning of deep-seated gas-c ondensate systems from hydrogen sulphide as a resul t of its reactions with Fe2+ cations of condensed hydrocarbon waters connected with the deep hydrogeologic inversion.

Keywordsframboidal pyrite, gas-condensate hydrocarbon systems, late-epigenetic processes, secondary reser voirs
  1. Lukin, A. E. (2014). Hydrocarbon potential of great depths and prospects of its mastering in Ukraine. Geophys. J., 36, No. 4, pp. 3-23 (in Russian). doi:
  2. Lukin, A. E. (1989). Genetical types of secondary alteration and oil-gas accumulation. Prepr. Institute of Geological Sciences of the NAS of Ukraine. Kiev (in Russian).
  3. Astafieva, M. M., Rozanov, A. Yu. & Hoover, R. (2005). Framboids: Their structure and origin. Paleontol. J., No. 5, pp. 3-9 (in Russian).
  4. Kizilstein, L. Ya. & Minayeva, L. G. (1972). Origin of framboidal forms of pyrite. Dokl. AN SSSR, 206, No. 5, pp. 1187-1189 (in Russian).
  5. Butler, I., Rickard, D. & Grimes, S. (2000). Framboidal pyrite: Self organisation in the Fe—S system. J. Conf. Abstr., 5, No. 2, pp. 276-277.
  6. Stryubel, G. & Zimmer, Z. (1987). Mineralogical dictionary. Moscow: Nedra (in Russian).
  7. Lukin, A. E., Lukina, O. I., Samoylenko, I. I. (2007). Nature of framboidal pyrite. Geolog Ukrainy, No. 3, pp. 16-31 (in Russian).
  8. Skripchenko, N. S. & Lytkin, V. A. (1969). Structure and genesis of “mineralized bacteria”. Dokl. AN SSSR, 188, No. 5, pp. 1137-1140 (in Russian).
  9. Lukin, A. E. (1999). Injection of deep hydrocarbon-polymineral substance in deep-seated rocks of oil and gas basins: nature, applied and epistemological significance. Geol. J., No. 4, pp. 7-22 (in Russian).
  10. Agusto, M. R. & Caselli, A. T. (2004). Manifestaciones de piritas framboidales en fumarolas de Isla Decepci ó n (Ant á rtida): Implicancias metalog é nicas. Rev. Asoc. Geol. Argent., 59, No. 1, pp. 152-157.
  11. Ohfuic, H. & Rickard, D. (2005). Experimental syntheses of framboids — a review. Earth-Sci. Rev., 71, pp. 147-170. doi:
  12. Mandelbrot, B. (1975). Fractal geometry of nature. Moscow: Mir (in Russian).
  13. Lukin, A. E. (1997). Lithogeodynamic factors of oil-gas accumulation in aulacogenic basins. Kiev: Naukova Dumka (in Russian).
  14. Korobov, A. D. & Korobova, L. A. (2011). Pulsating stress as reflection of tectonic hydrothermal activation and its role in generation of productive collectors cover (West Siberia is taken as an example). Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, No. 6, pp. 4-12 (in Russian).
  15. Lukin, A. E. (2002). Hypogenic-allogenetic decompression — the leading factor of formation of secondary oil and gas reservoirs. Geol. J., No, 4, pp. 15-32 (in Russian).