Title | Lagrange interpolation polynomial in a linear space with inner product |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Kashpur, OF, Khlobystov, VV |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2018.08.012 |
Issue | 8 |
Section | Mathematics |
Pagination | 12-17 |
Date Published | 8/2018 |
Language | Ukrainian |
Abstract | In a linear infinitedimensional space with inner product and in a finitedimensional Euclidean space, the accuracy of the Lagrange formula on polynomials of the corresponding degree is investigated. |
Keywords | accuracy on polynomials, Euclidean space, Lagrange formula, linear space |
References:
- Makarov, V. L., Khlobystov, V. V.& Yanovich, L. A. (2000). Interpolation of operators. Kiev: Naukova Dumka (in Russian).
- Kashpur, O. F. & Khlobystov, V. V. (2016). To some questions of a polynomial interpolation in Euclidean spaces. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 10-14 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2016.10.010
- Yegorov, A. D., Sobolevsky, P. I. & Yanovich, L. A. (1985). Approximate methods for computation of continual integrals. Minsk: Nauka i Tehnika (in Russian).
- Berezin, I. S. & Zhidkov, N. P. (1962). Methods of computations. Vol. 1. Moscow: Fizmatgiz (in Russian).
- Babenko, K. I. (2002). Foundations of numerical analysis. Moscow, Izhevsk: RC "Regular and chaotic dynamics" (in Russian).
- Trenogin, V. A. (1980). Functional analysis. Moscow: Nauka (in Russian).