Prandtl steady rotary current in an upright cylindrical container

TitlePrandtl steady rotary current in an upright cylindrical container
Publication TypeJournal Article
Year of Publication2018
AuthorsTimokha, AN
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published8/2018

The quantifying of the experimentally-known (Prandtl, 1949) steady rotary current during the swirl-type sloshing is first given. The current is treated as the sum of the mean wave (pseudo-) momentum through the meridional cross-section  and  the  mean  wave  Eulerian  flow,  which  is  governed  by  the  Craik—Leibovich  equation. The  constructed analytical inviscid theory is supported by existing experimental data.

KeywordsCraik—Leibovich equation, sloshing, Stokes drift, swirling wave
  1. Prandtl, L. (1949). Erzuengung von Zirkulation beim Sch ü tteln von Gef ä ssen. ZAMM, 29, No. 1/2, pp. 8-9. doi:
  2. Hutton, R. E. (1964). Fluid-particle motion during rotary sloshing. J. Appl. Mech., Transactions ASME, 31, No. 1, p. 145-153. doi:
  3. Royon-Lebeaud, A., Hopfinger, E.J. & Cartellier, A. (2007). Liquid sloshing and wave breaking in circular and square-base cylindrical containers. J. Fluid Mech., 577, pp. 467-494. doi:
  4. Reclari, M. (2013). Hydrodynamics of orbital shaken bioreactors. Ecole Polytechnique Federale de Lausanne, PhD Thesis, No. 5759, 159 pp.
  5. Bouvard, J., Herreman, W. & Moisy, F. (2017). Mean mass transport in an orbitally shaken cylindrical con- tainer. Phys. Review, Fluids, 2, No. 084801, pp. 1-17.
  6. Faltisen, O. M., Lukovsky, I. A. & Timokha, A. N. (2016). Resonant sloshing in an upright annular tank. J. Fluid Mech. 804, pp. 608-645. doi:
  7. Faltisen, O. M., Lukovsky, I. A. & Timokha, A. N. (2009). Sloshing. Cambridge Univ. Press.
  8. Craik, A. D. & Leibovich, S. (1976). A rational model for Langmuir circulations. J. Fluid Mech., 73, No. 3, pp. 401-426. doi:
  9. Timokha, A. N. (2018). Nonlinear boundary-layer and laminar vertical stream generated by resonant sloshing in a circular-base tank. Nonlinear Oscillations, 21, No. 1, pp. 131-145.