A somposition-based approach to the description of the solid-solution hardening in binary solutions with unrestricted solubility of components

TitleA somposition-based approach to the description of the solid-solution hardening in binary solutions with unrestricted solubility of components
Publication TypeJournal Article
Year of Publication2018
AuthorsFirstov, SA, Rogul, TG
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2018.08.058
Issue8
SectionMaterials Science
Pagination58-64
Date Published8/2018
LanguageRussian
Abstract

A new approach based on the assumption of a composition-cluster structure to the description of the hardening in binary solid solutions with unrestricted solubility of components is considered. An expression is proposed for the concentration dependence of the critical shear stress in unbounded solids, in which the hardening with increasing the concentration of a doping component is proportional to the value of c (1 − c).

Keywordsbinary solid solutions, composite-cluster structure, critical shear stress
References: 
  1. Hirt, J. & Lote, I. (1972). Theory of dislocations. Moscow: Atomizdat (in Russian).
  2. Butt, M. Z. & Feltham, P. (1993). Review solid-solution hardening. J. Mater. Sci ., 28, pp. 2557-2576. doi: https://doi.org/10.1007/BF00356192
  3. Patinet, S. & Proville, L. (2008). Depinning transition for a screw dislocation in a model solid solution. Phys. Rev. B, 78, 104-109. doi: https://doi.org/10.1103/PhysRevB.78.104109
  4. Mott, N. F. & Nabarro, F. R. N. (1948). Disloc ation theory and transient creep. In Report of a co nference on the strength of solids (pp. 1-19). London: The Physical Society.
  5. Fleischer, R. & Hibbard, W. (1967). Hardening in the formation of a solid solution. Proceedings of the conference Structure and mechanical properties of metals, Scientific. fiz. Laboratory, Treadington, Middlesex, January 1963. Moscow: Metallurgiya (in Russian).
  6. Labusch, R. (1970). A statistical theory of solid solution hardening. Phys. Stat. Sol., 41, pp. 659-669. doi: https://doi.org/10.1002/pssb.19700410221
  7. Seeger, V. A. (1956). Theorie der Kristallplastizit ä t. IV. Verfestigung und Gleitmechanismus dichtest ge- packter Metalle und Legierungen. Z. Naturforschg., 11 a, pp. 985-998.
  8. Sashs, Von G. & Weerts, J. (1930). Zugversuche an Gold-Silberkristallen. Z. Phys., 62, Iss. 7-8, pp. 473-493.
  9. Chalmers, B. (1963). Physical metallography. Moscow: Metallurgizdat (in Russian).
  10. Milne, I. & Smallman, R. E. (1968). Plastic deformation of niobium (columbium)-molybdenum alloy single crystals. Trans. Met. Soc . AIME , 242, pp. 120-126.
  11. Carlson, O. N. & Eustice, A. L. (1959). Vanadium-chromium alloy system. Ames Laboratory Technical Reports. 12. Iowa State University. Retrieved from http://lib.dr.iastate.edu/ameslab_isreports/12 doi: https://doi.org/10.2172/4221916
  12. ASTM Hardness Conversion Chart — Automation and Metrology Inc. Retrieved from http://www.auto-et.com/Rockwell_hardness_tester/ASTM_Hardness_Chart.htm
  13. Tabor, D. (1951). The hardness of metals. Oxford, UK: Clarendon Press.
  14. Trefilov, V. I, Milman, Yu. V. & Firstov, S. A. (1975). Physical basis of strength of refractory materials. Kiev: Naukova Dumka (in Russian).
  15. Jaffi, R. & Khan, E. (1967). In Structure and mechanical properties of metals (p. 341). Moscow: Metallurgiya (in Russian).