Title | On the development of small-scale plastic strips from the point of intersection of microplastic deformation lines |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Kaminsky, AA, Kipnis, LA, Polischuk, TV |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2019.01.033 |
Issue | 1 |
Section | Mechanics |
Pagination | 33-39 |
Date Published | 01/2019 |
Language | Ukrainian |
Abstract | The small-scale plastic prefracture zone at the point of intersection of microplastic deformation lines is determined. The problem on the plastic zone is reduced to the symmetric problem of the theory of elasticity for a |
Keywords | intersection of microplastic deformation lines, small-scale plastic prefracture zone, tangential displacement rupture lines, Wiener—Hopf method |
1. Panasyuk, V. V. & Savruk, M. P. (1992). Model for plasticity bands in elastoplastic failure mechanics. Mater. Sci., 28, No. 1, pp. 41-57. doi: https://doi.org/10.1007/BF00723631
2. Berezhnitskii, L. T. & Kundrat, N. M. (1982). Plastic bands at the tip of a linear rigid inclusion. Strength of Materials, Nо. 11, pp. 1502-1505. doi: https://doi.org/10.1007/BF00768948
3. Berezhnitskii, L. T. & Kundrat, N. M. (1984). Origin and development of plastic strains in the neighborhood of an acute-angled rigid inclusion. Mater. Sci., 19, No. 6, pp. 538-546. doi: https://doi.org/10.1007/BF00722124
4. Kaminskii, A. A., Kipnis, L. A. & Khazin, G. A. (2001). Study of the Stress State Near a Corner Point in Simulating the Initial Plastic Zone by Slipbands. Int. Appl. Mech., 37, No. 5, pp. 647-653. doi: https://doi.org/10.1023/A:1012312513881
5. Kaminskii, A. A., Kipnis, L. A. & Khazin, G. A. (2002). Analysis of Plastic Zone at a Corner Point by the Trident Model. Int. Appl. Mech., 38, No. 5, pp. 611-616. doi: https://doi.org/10.1023/A:1019766106040
6. Panasyuk, V. V., Andreykiv, A. E. & Parton, V. Z. (1988). Fundamentals of fracture mechanics. Kiev: Naukova Dumka (in Russian).
7. Parton, V. Z. & Perlin, P. I. (1981). Methods of the mathematical theory of elasticity. Moscow: Nauka (in Russian).
8. Vitvitskii, P. M., Panasyuk, V. V. & Yarema, S. Ya. (1973). Plastic deformation in the vicinity of a crack and the criteria of fracture (Review). Strength of Materials, Nо. 2, pp. 135-151. doi: https://doi.org/10.1007/BF00770282
9. Noble, B. (1962). Using of the Wiener—Hopf method for the solve the partial derivative equations. Moscow: Izda-vo Inostr. lit. (in Russian).