Title | A generalization of the malnormal subgroups |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Kurdachenko, LA, Semko, NN, Subbotin, IYa. |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2019.03.025 |
Issue | 3 |
Section | Mathematics |
Pagination | 25-28 |
Date Published | 03/2019 |
Language | English |
Abstract | A subgroup H of a group G is called malonormal in G, if H ∩ Hx = ‹1› for every element x ∈ NG(H). These subgroups are generalizations of malnormal subgroups. Every malnormal subgroup is malonormal, and every selfnormalizing malonormal subgroup is malnormal. Furthermore, every normal subgroup is malonormal. In this paper we obtain a description of finite and certain infinite groups, whose subgroups are malonormal. |
Keywords | Frobenius group, generalized radical groups, locally graded groups, malnormal subgroups, malonormal subgroups |
1. Baumslag, B. (1968). Generalized free product whose twogenerator subgroups are free. J. London Math. Soc., 43, pp. 601-606. doi: https://doi.org/10.1112/jlms/s1-43.1.601
2. Gorenstein, D. (1980). Finite groups of prime power order. New York: Chelsea Publ. Co.
3. Flavell, P. (2000). A note on Frobenius groups. J. Algebra, 228, pp. 367-378. doi: https://doi.org/10.1006/jabr.2000.8269
4. De la Harpe, P. & Weber, C. (2014). Malnormal subgroups and Frobenius groups: basics and examples. Confluentes Math., 6, pp. 1, 65-76. doi: https://doi.org/10.5802/cml.13
5. Kirichenko, V. V., Kurdachenko, L. A. & Subbotin, I. Ya. (2011). Some related to pronormality subgroup families and the properties of a group. Algebra Discrete Math., 11, pp. 75-108.
6. Baer, R. (1933). Situation der Untergruppen und Struktur der Gruppe. S.B. Heidelberg Akad., 2, pp. 12-17.
7. Olshanskii, A. Yu. (1981). An infinite group with subgroups of prime orders. Math. USSRIzv., 16, pp. 279-289.
8. Chernikov, S. N. (1970). Infinite nonAbelian groups with normality condition for infinite nonabelian subgroups. Dokl. AN SSSR, 194, No. 6, pp. 1280-1283 (in Russian).