Title | A classification of simple closed geodesics on regular tetrahedra in the Lobachevsky space |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Borisenko, AA, Sukhorebska, DD |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2019.04.003 |
Issue | 4 |
Section | Mathematics |
Pagination | 3-9 |
Date Published | 04/2019 |
Language | Russian |
Abstract | The full classification of simple closed geodesics on regular tetrahedra in the hyperbolic space is described. The asymptotics of the number of simple closed geodesics of length not more than L, with L tending to infinity, is found. |
Keywords | closed geodesics, Lobachevsky space, regular tetrahedra |
1. Lusternik, L. A. & Schnirelmann, L. G. (1927). On the problem of three closed geodesic on surfaces of genus zero. C. R. Acad. Sci., 189, pp. 269-271.
2. Fet, A. I. (1965). On a periodicity problem in the calculus of variations. Dokl. AN SSSR, 160, No. 2, pp. 287-289 (in Russian).
3. Huber, H. (1961). On the analytic theory hyperbolic spatial forms and motion groups II. Math. Ann., 143, pp. 463-464 (in German). doi: https://doi.org/10.1007/BF01470758
4. Rivin, I. (2001). Simple curves on surfaces. Geometriae Dedicata, 87, pp. 345-360. doi: https://doi.org/10.1023/A:1012010721583
5. Mirzakhani, M. (2008). Growth of the number of simple closed geodesics on hyperbolic surfaces. Ann. Math., 168, pp. 97-125. doi: https://doi.org/10.4007/annals.2008.168.97
6. Fuchs, D. & Fuchs, E. (2007). Closed geodesics on regular polyhedra. Mosc. Math. J., 7, No. 2, pp. 265-279. doi: https://doi.org/10.17323/1609-4514-2007-7-2-265-279
7. Fuchs, D. (2009). Geodesics on a regular dodecahedron. Preprints of Max Planck Institute for Mathematik, No. 91. Bonn. Retrieved from http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2010/2009_91.pdf
8. Protasov, V. Yu. (2007). Closed geodesics on the surface of a simplex. Sb. Math., 198, No. 2, pp. 243-260. doi: https://doi.org/10.1070/SM2007v198n02ABEH003836
9. Hardy, G. H. & Wright, E. M. (1975). An introduction to the theory of numbers. Oxford: Oxford University Press.