A classification of simple closed geodesics on regular tetrahedra in the Lobachevsky space

TitleA classification of simple closed geodesics on regular tetrahedra in the Lobachevsky space
Publication TypeJournal Article
Year of Publication2019
AuthorsBorisenko, AA, Sukhorebska, DD
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2019.04.003
Issue4
SectionMathematics
Pagination3-9
Date Published04/2019
LanguageRussian
Abstract

The full classification of simple closed geodesics on regular tetrahedra in the hyperbolic space is described. The asymptotics of the number of simple closed geodesics of length not more than L, with L tending to infinity, is found.

Keywordsclosed geodesics, Lobachevsky space, regular tetrahedra
References: 

1. Lusternik, L. A. & Schnirelmann, L. G. (1927). On the problem of three closed geodesic on surfaces of genus zero. C. R. Acad. Sci., 189, pp. 269-271.
2. Fet, A. I. (1965). On a periodicity problem in the calculus of variations. Dokl. AN SSSR, 160, No. 2, pp. 287-289 (in Russian).
3. Huber, H. (1961). On the analytic theory hyperbolic spatial forms and motion groups II. Math. Ann., 143, pp. 463-464 (in German). doi: https://doi.org/10.1007/BF01470758
4. Rivin, I. (2001). Simple curves on surfaces. Geometriae Dedicata, 87, pp. 345-360. doi: https://doi.org/10.1023/A:1012010721583
5. Mirzakhani, M. (2008). Growth of the number of simple closed geodesics on hyperbolic surfaces. Ann. Math., 168, pp. 97-125. doi: https://doi.org/10.4007/annals.2008.168.97
6. Fuchs, D. & Fuchs, E. (2007). Closed geodesics on regular polyhedra. Mosc. Math. J., 7, No. 2, pp. 265-279. doi: https://doi.org/10.17323/1609-4514-2007-7-2-265-279
7. Fuchs, D. (2009). Geodesics on a regular dodecahedron. Preprints of Max Planck Institute for Mathematik, No. 91. Bonn. Retrieved from http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2010/2009_91.pdf
8. Protasov, V. Yu. (2007). Closed geodesics on the surface of a simplex. Sb. Math., 198, No. 2, pp. 243-260. doi: https://doi.org/10.1070/SM2007v198n02ABEH003836
9. Hardy, G. H. & Wright, E. M. (1975). An introduction to the theory of numbers. Oxford: Oxford University Press.