On induced modules over locally Abelian-by-polycyclic groups of finite rank

TitleOn induced modules over locally Abelian-by-polycyclic groups of finite rank
Publication TypeJournal Article
Year of Publication2019
AuthorsTushev, AV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2019.06.008
Issue6
SectionMathematics
Pagination8-11
Date Published06/2019
LanguageEnglish
Abstract

We develop some methods for studying the modules over group rings, which are based on properties of induced modules and on the embedding of these modules in the modules over rings of quotients of group rings. Using these methods, we have obtained the criteria of primitivity for group algebras of certain classes of locally soluble groups.

Keywordsgroup rings, induced modules, particle rings, primitive algebras
References: 

1. Tushev, A. V. (2000). On primitive representations of soluble groups of finite rank. Sb. Mat., 191, No. 11, pp. 1707-1748. doi: https://doi.org/10.1070/SM2000v191n11ABEH000524
2. Baer, R. (1964). Irreducible groups of automorphisms of Abelian groups. Pacific J. Math., 14, pp. 385-406. doi: https://doi.org/10.2140/pjm.1964.14.385
3. Zaitsev, D. I. (1980). Products of Abelian groups. Algebra and Logic, 19, No. 2, pp. 94-106. doi: https://doi.org/10.1007/BF01669835
4. Brown, K. A. (1982). The Nullstellensatz for certain group rings. J. London Math. Soc., 26, No. 2, pp. 425-434. doi: https://doi.org/10.1112/jlms/s2-26.3.425
5. Tushev, A. V. (2002). On solvable groups with proper quotient groups of finite rank. Ukr. Math. J., 54, No. 11, pp. 1897-1905. doi: https://doi.org/10.1023/A:1024052726835
6. Tushev, A. V. (1999). Induced modules over group algebras of metabelian groups of finite rank. Commun. Algebra, 27, No. 12, pp. 5921-5938. doi: https://doi.org/10.1080/00927879908826798
7. Farcas, D. R. & Passman, D. S. (1982). Primitive Noetherian group rings. Commun. Algebra, 6, No. 3, pp. 301-315. doi: https://doi.org/10.1080/00927877808822247
8. Roseblade, J. E. (1978). Prime ideals in group rings of polycyclic groups. Proc. London Math. Soc., 36, No. 3, pp. 385-447. doi: https://doi.org/10.1112/plms/s3-36.3.385
9. Brown, K. A. (1981). Primitive group rings of soluble groups. Arch. Math., 36, No. 1, pp. 404-413. doi: https://doi.org/10.1007/BF01223718
10. Brookes, C. J. C. (1985). Ideals in group rings of soluble groups of finite rank. Math. Proc. Cambridge. Philos. Soc., 97, No. 1, pp. 27-49. doi: https://doi.org/10.1017/S0305004100062551
11. Hall, P. (1959). On the finiteness of certain soluble groups. Proc. London Math. Soc., 9, No. 4, pp. 595-622. doi: https://doi.org/10.1112/plms/s3-9.4.595
12. McConnell, J. C. (1982). The Nullstellensatz and Jacobson properties for rings of differential operators. J. London Math. Soc., 26, No. 1, pp. 37-42. doi: https://doi.org/10.1112/jlms/s2-26.1.37