On the stabilization of the motion of uncertain affine systems

TitleOn the stabilization of the motion of uncertain affine systems
Publication TypeJournal Article
Year of Publication2019
AuthorsMartynyuk, AA, Chernetskaya, LN, Martynyuk-Chernienko, Yu.A
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published09/2019

The article discusses affine systems with uncertain parameter values, for the stabilization of which the linear control is applied. The study of the stability and boundedness of the motion is carried out by the direct Lyapunov method. The concept of a pair of nonlinearly stabilized systems is introduced, and the sufficient conditions for the stability and boundedness of the motion are established, including the case of stability over a finite time in terval.

Keywordsaffine system, Lyapunov function method, nonlinear stabilizability, stability

1. Yoshizava, T. (1966). Stability Theory by Liapunov’s Second Method. Tokyo: Math. Soc. Japan.
2. Zak, S. H. (1990). On the stabilization and observation of non-linear uncertain dynamic systems. IEEE Trans. Automat. Control. AC 35. pp. 604-607. doi: https://doi.org/10.1109/9.53535
3. Louartassi, Y., El Houssine El Mazoudi & Noureddine, E. (2012). A new generalization of lemma Gronwall– Bellman. Appl. Math. Sci., No. 6(13), pp. 621-628.
4. Martynyuk, A. A. (2015). Novel bounds for solutions of nonlinear differential equations. Appl. Math., No. 6, pp. 182-194. doi: https://doi.org/10.4236/am.2015.61018
5. Rao, M. R. M. (1963). Upper and lower bounds of the norm of solutions of nonlinear Volterra integral equations. Proc. Not. Acad. Sci. (India), No. 33, pp. 263-266.
6. Tsokos, C. P. &Rao, M. R. M. (1969). Finite time stability of control systems and integral inequalities. Bul. Inst. Politech. Lasi., 15(19). No. 1-2, pp. 105-112.
7. Corless, U. & Leitmann, G. (1989). Deterministic Control of Uncertain Systems via a Constructive Use of Lyapunov Stability Theory. Berlin: Springer.
8. Martynyuk, A. A. & Martynyuk-Chernienko, Yu. A. (2012). Uncertain Dynamical Systems: Stability and Motion Control. Boca Raton: CRC Press. doi: https://doi.org/10.1201/b11314
9. Blancin,i F. (2016). Lyapunov methods in robustness — an overview. Univ. di Udine, Italy (manuscript). 73 p.