Cerium oxide nanoparticles and metformin increase the reliability of the prooxidant/antioxidant balance and the survival of ageing rats

TitleCerium oxide nanoparticles and metformin increase the reliability of the prooxidant/antioxidant balance and the survival of ageing rats
Publication TypeJournal Article
Year of Publication2020
AuthorsNikitchenko, YV, Klochkov, VK, Kavok, NS, Karpenko, NA, Sedyh, OO, Nikitchenko, IV, Bozhkov, AI, Yefimova, SL, Seminozhenko, VP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
SectionMaterials Science
Date Published10/2020

In comparison with the action of metformin — mimetic of the calorie restricted diet, which prolong the animals lifespan, it has been studied the effect of nanoparticles of cerium dioxide (CeO2 NPs (1-2 nm)) on survival, physiological indices (the concentration of thyroxine, rectal temperature), as well as biochemical indices (content of lipid hydroperoxides, aconitase, glutathione peroxidase, glutaredoxin, glutathione reductase, NADP+ -dehydrogenase activities (glucose-6-phosphate-, malate- and isocitrate dehydrogenase)) in serum, liver mitochondrial and postmitochondrial fraction of ageing rats. It has been found that the prolonged use of CeO2 NPs with drinking water (0.25-0.30 mg/kg of body weight per day) and metformin (100-110 mg/kg of body weight per day) from 670 days after the birth lead to a significant increase in survival (the median survival of control rats was 900, in animals treated with CeO2 NPs — 960, and metformin — 990 days), a decrease in rectal temperature, a slowdown in the decrease in the level of thyroxine in blood, and normalization of the prooxidant/antioxidant balance in liver and blood tissues. Calculated integral index of reliability of prooxidant-antioxidant balance (reliability coefficient) in the studied tissues of rats in response to the application of the CeO2 NPs increased 4.99 times, and metformin — 4.94 times compared to intact animals. The data obtained allow us concluding about the prospects of the CeO2 NPs, as well as metformin for the development of geroprotector drugs, increasing the healthspan and survival of an ageing organism.

Keywordsblood, body temperature, CeO2 nanoparticles, liver, metformin, prooxidant/antioxidant balance, survival of old male rats, thyroxine

1. Masoro, E. J. (2000). Caloric restriction and aging: an update. Exp. Gerontol., 35, pp. 299-305. https://doi.org/10.1016/S0531-5565(00)00084-X
2. Yu, B. P., Lim, B. O. & Sugano, M. (2002). Dietary restriction downregulates free radical and lipid peroxide production: plausible mechanism for elongation of life span. J. Nutr. Sci. Vitaminol. (Tokyo), 48, No. 4, pp. 257-264. https://doi.org/10.3177/jnsv.48.257
3. Merry, B. J. (2004). Oxidative stress and mitochondrial function with ageing — the effects of calorie restriction. Ageing Cell, 3, No. 1, pp. 7-12. https://doi.org/10.1046/j.1474-9728.2003.00074.x
4. Belostotskaia, L. I., Dziuba, V. N. & Nikitchenko, I. (2008). The effect of three different hypocaloric diets on oxidative phosphorylation and activity of enzymatic antioxidant system in rat liver mitochondria. Advances in gerontology = Uspekhi gerontologii, 21, No. 2, pp. 235-239 (in Russian). https://europepmc.org/article/med/18942367
5. Nikitchenko, Yu. V. (2012). Prooxidant-antioxidant system in ageing processes and experimental approaches to its correction (Extended abstract of Doctor thesis). V. Karasin National University, Kharkiv, Ukraine (in Russian).
6. Weindruch, R. (2006). Will dietary restriction work in primates? Biogerontology, 7, No. 3, pp. 169-171. https://doi.org/10.1007/s10522-006-9007-0
7. Anisimov, V. N. (2008). Molecular and physiological mechanisms of aging. St. Petersburg: Nauka.
8. Smith Jr, D. L., Elam Jr, C. F., Mattison, J. A., Lane, M. A., Roth, G. S., Ingram, D. K. & Allison, D. B. (2010). Metformin supplementation and life span in Fischer-344 rats. J Gerontol. Biol. Sci., 65, No. 5, pp. 468-474. https://doi.org/10.1093/gerona/glq033
9. Wang, G. S. & Hoyte, C. (2019). Review of Biguanide (Metformin) Toxicity. J Intensive Care Med., 34, No. 11-12, pp. 863-876. https://doi.org/10.1177/0885066618793385
10. DeCoteau, W., Heckman, K. L., Estevez, A. Y., Reed, K. J., Costanzo, W., Sandford, D. & Parker, M. (2016). Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomed.-Nanotechnol., 12, No. 8, pp. 2311-2320. https://doi.org/10.1016/j.nano.2016.06.009
11. Klochkov, V. K., Grigorova, A. V., Sedyh, O. O. & Malyukin, Y. V. (2012). The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids Surf. A Physicochem. Eng. Asp., 409, pp. 176-182. https://doi.org/10.1016/j.colsurfa.2012.06.019
12. Nikitchenko, Y. V., Klochkov, V. K., Kavok, N. S., Karpenko, N. A., Yefimova, S. L., Nikitchenko, I. V. & Bozhkov, A. I. (2020). Age-related effects of orthovanadate nanoparticles involve activation of GSHdependent antioxidant system in liver mitochondria. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-020-02196-7
13. Frolkis, V. V. & Muradian, K. K. (1991). Life span prolongation. Boston-London: CRC Press.
14. Nikitchenko, Yu. V., Klochkov, V. K., Kavok, N. S., Karpenko, N. A., Sedych O. О., Bozhkov, A. I., Malyukin, Yu. V. & Semynozhenko, V. P. (2020). Gadolinium orthovanadate nanoparticles increase survival of old rats. Dopov. Nac. akad. nauk Ukr., No. 2, pp. 29-36 (in Russian). https://doi.org/10.15407/dopovidi2020.02.029
15. Nikitchenko, Yu. V., Klochkov, V. K., Kavok, N. S., Karpenko, N. A., Sedyh, O. O., Bozhkov, A. I., Malyukin, Yu. V. & Seminozhenko, V. P. (2020). Orthovanadate nanoparticles delay accelerated ageing in rats via prevention of oxidative disturbances. Dopov. Nac. akad. nauk. Ukr., No. 7, pp. 43-51. https://doi.org/10.15407/dopovidi2020.07.043