Title | Lie symmetries of generalized Kawahara equations |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | Vaneeva, OO, Zhalij, AY |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2020.12.003 |
Issue | 12 |
Section | Mathematics |
Pagination | 3-10 |
Date Published | 12/2020 |
Language | Ukrainian |
Abstract | We carry out the group classification of a normalized class of generalized Kawahara equations with variable coefficients. Admissible transformations are studied, and the partition of the class into two normalized subclasses is performed. For each of these subclasses, the respective equivalence groupoids are found. As a result, all equations from the class admitting Lie symmetry extensions are revealed. |
Keywords | admissible transformations, equivalence group, equivalence groupoid, group classification, Kawahara equations, Lie symmetries |
1. Fushchich, W. I. & Nikitin, A. G. (1990). Symmetry of equations of quantum mechanics. Moscow: Nauka (in Russian).
2. Kawahara, T. (1972). Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan, 33, pp. 260-271. https://doi.org/10.1143/JPSJ.33.260
3. Marchenko, A. V. (1988). Long waves in shallow liquid under ice cover. J. Appl. Math. Mech., 52, pp. 180-183. https://doi.org/10.1016/0021-8928(88)90132-3
4. Tkachenko, V. A. & Yakovlev, V. V. (1999). Nonlinear-dispersion models of the surface waves in sea coated by ice. Appl. Hydromech., 1, No. 3. pp. 55—64 (in Russian).
5. Gandarias, M. L., Rosa, M., Recio, E. & Anco, S. (2017). Conservation laws and symmetries of a generalized Kawahara equation. AIP Conf. Proc., 1836. 020072. 6 p. https://doi.org/10.1063/1.4982012
6. Kuriksha, O., Pošta, S. & Vaneeva, O. (2014). Group classification of variable coefficient generalized Kawahara equations. J. Phys. A: Math. Theor., 47. 045201. 19 p. https://doi.org/10.1088/1751-8113/47/4/045201
7. Kingston, J. G. & Sophocleous, C. (1998). On form-preserving point transformations of partial differential equations. J. Phys. A: Math. Gen., 31, No. 6, pp. 1597-1619. https://doi.org/10.1088/0305-4470/31/6/010
8. Popovych, R. O., Kunzinger, M. & Eshraghi, H. (2010). Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math., 109, pp. 315-359. https://doi.org/10.1007/s10440-008-9321-4
9. Popovych, R. O. & Bihlo, A. (2012). Symmetry preserving parameterization schemes. J. Math. Phys., 53, No. 7, 073102, 36 p. https://doi.org/10.1063/1.4734344
10. Vaneeva, O. O., Bihlo, A. & Popovych, R. O. (2020). Generalization of the algebraic method of group clas sification with application to nonlinear wave and elliptic equations. Commun. Nonlinear Sci. Numer. Simulat., 91, 105419, 28 p. https://doi.org/10.1016/j.cnsns.2020.105419
11. Ovsiannikov, L. V. (1978). Group analysis of differential equations. Moscow: Nauka (in Russian).
12. Nesterenko, M., Pošta, S., Vaneeva, O. (2016). Realizations of Galilei algebras. J. Phys. A: Math. Theor., 49, 115203, 26 pp. https://doi.org/10.1088/1751-8113/47/4/045201