Soliton in a onedimensional force chain with Hertz contacts

TitleSoliton in a onedimensional force chain with Hertz contacts
Publication TypeJournal Article
Year of Publication2020
AuthorsGerasymov, OI, Spivak, AY
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published3/2020

We study comprehensively a nonlinear solitonic mode which propagates in the long-wave limit in a 1D chain of identical spherical particles interacting with each other by the Hertz law. The obtained theoretical results have been compared with relevant parameters of familiar Nesterenko’s soliton. Quantitative discrepancies between parameters of both results are outlined. Particular attention has been paid to the study of parameters which describe the impact conditions for a discrete chain and correspond to the solitonic mode generation, nonhomogeneous energy distribution, and the arrest of the solitonic energy within a particularly decorated (defected) chain. The amplitude of the soliton mode reflected from an impurity particle is estimated theoretically and found to be in a good agreement with the experimental data (much better than in analogous works).

Keywordsbinary collisions, effective mass, energy transmission, Hertz chain, quasiparticle, soliton

1. Fermi, E., Pasta, J. R. & Ulam, S. M. (1955). Studies of Nonlinear Problems. Technical Report LA-1940, Los Alamos Sci. Lab., pp. 978-988. Doi:
2. Nesterenko, V. F. (1983). Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. (Engl. Trans.), 24, No. 5, pp. 733-743. Doi:
3. Goldhirsch, I. S. A. A. C. & Zanetti, G. (1993). Clustering instability in dissipative gases. Physical review letters, 70, No. 11, pp. 1619-1622. Doi:
4. Coste, C., Falcon, E. & Fauve, S. (1997). Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E, 56, No. 5, pp. 6104-6117. Doi:
5. Hascoët, E. & Herrmann, H. J. (2000). Shocks in non-loaded bead chains with impurities. The Eur. Phys. J. B, 14, pp. 183-190. Doi:
6. Chatterjee, A. (1999). Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E, 59, No. 5, pp. 5912-5919. Doi:
7. Daraio, C., Nesterenko, V. F., Herbold, E. B. & Jin S. (2006). Tunability of solitary wave properties in onedimensional strongly nonlinear photonic crystals. Phys. Rev. E, 73, No. 2, pp. 026610/1-10. Doi:
8. Job, S., Melo, F., Sokolow, A. & Sen, S. (2007). Solitary wave trains in granular chains: experiments, theory and simulations. Granular Matter, 10, No. 1, pp. 13-20. Doi:
9. Gerasymov, O. I. & Vandewalle, N. (2012). On the exact solutions of the problem of impulsive propagation in an inhomogeneous granular chain. Dopov. Nac. acad. nauk Ukr., No. 8, pp. 67-72 (in Ukrainian).
10. Stefanov, A. & Kevrekidis, P. (2012). On the Existence of Solitary Traveling Waves for Generalized Hertzian Chains. J. Nonl. Sci., 22, No. 3, pp. 327-349. Doi:
11. Li, F., Zhao, L., Tian, Zh., Yu, L. & Yang, J. (2013). Visualization of solitary waves via laser Doppler vibrometry for heavy impurity identification in a granular chain. Smart Mater. Struct., 22, No. 3, pp. 035016/1-10. Doi:
12. Lumay, G., Dorbolo, S., Gerasymov, O. & Vandewalle, N. (2013). Experimental study of a vertical column of grains submitted to a series of impulses. Eur. Phys. J. E, 36, No. 2, pp. 16/1-6. Doi:
13. Gerasymov, O. I. (2015). Physics of granular materials. Odesa: TES (in Ukrainian).
14. Yasuda, H., Chong, C., Yang, J. & Kevrekidis, P. G. (2017). Emergence of dispersive shocks and rarefaction waves in power-law contact models. Phys. Rev. E, 95, No. 6, pp. 062216/1-5. Doi:
15. Donovan, K. J. (2019). Microfluidic Investigations of Capillary Flow and Surface Phenomena in Porous Polymeric Media for 3D Printing. (Thesis PhD in Materials Science). Oregon State Univ., Corvallis, USA.