Perspectives of introducing aryl substituents into 1,3-functionalized cyclobutane ring by C - C cross-coupling reactions of trifluoroborates

TitlePerspectives of introducing aryl substituents into 1,3-functionalized cyclobutane ring by C - C cross-coupling reactions of trifluoroborates
Publication TypeJournal Article
Year of Publication2020
AuthorsHryshchuk, OV, Tymtsunik, AV, Moskvina, VS, Grygorenko, OO
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published5/2020

Preparative procedures for the synthesis of 1,3-functionalized cyclobutane-containing trifluoroborates bearing a protected amino- or carboxylic group are developed. The method included the reduction of the corresponding 3-functionalized cyclobutanones (i.e. tert-butyl (3-oxocyclobutyl)carbamate and methyl 3-oxocyclo butanecarboxylate) with sodium borohydride in methanol, giving the corresponding secondary alcohols. Their further Appel reaction with tetrabromomethane and triphenylphosphine provides 1,3-functionalized cyclobutane- derived bromides (57 and 43 % for two steps, respectively). The reaction of these bromides with bis(pinacolato) diboron in the presence of copper (I) bromide — triphenylphosphine complex and lithium tert-butylate, followed by treatment with potassium hydrofluoride gives the target trifluoroborates (63 and 47 % for two steps, respectively). These products are obtained with moderate diastereoselectivity (dr = 2 : 1 to 3 : 1). For the case of coupling with bromobenzene, it is shown that the obtained derivatives do not undergo the Suzuki—Miyaura reaction neither with classical tetrakis(triphenylphosphino)palladium (no reaction occurs) nor even upon the application of highly active palladium catalysts based on di(1-adamantyl)(n-butyl)phosphine (CataXCium® A) (a complex mixture of products is formed, presumably due to the β-elimination in intermediate palladium complexes). Nevertheless, the photoredox coupling is possible in the presence of dual nickel-iridium catalyst (namely, iridium complex with the 3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl]phenyl (dF(CF3)ppy) and 4,4′-ditert- butyl-2,2′-dipyridyl (dtbpy) ligands, [Ir{dF(CF3)ppy}2(dtbpy)]PF6, as well as nickel complex, Ni(1,2-dimethoxyethane) Cl2 — dtbpy) in the presence of cesium carbonate upon irradiation with a fluorescent lamp, which gives the target products after the removal of the protective groups in 32—43 % yield (per two steps). It is shown that, unlike for 1,2-difunctionalized cyclobutane derivatives, the C—C coupling in the case of 1,3-isomers occurs without any diastereoselectivity (dr = 1 : 1).

Keywordscyclobutane, organoboron compounds, photoredox coupling, small carbocycles, Suzuki—Miyaura reaction, trifluoroborates

1. Grygorenko, O. O., Volochnyuk, D. M., Ryabukhin, S. V. & Judd, D. B. (2020). The Symbiotic relationship between drug discovery and organic chemistry. Chem. Eur. J., 26, No. 6, pp. 1196-1237. Doi:
2. Mitton-Fry, M. J., Brickner, S. J., Hamel, J. C., Brennan, L., Casavant, J. M., Chen, M., Chen, T., Ding, X., Driscoll, J., Hardink, J., Hoang, T., Hua, E., Huband, M. D., Maloney, M., Marfat, A., McCurdy, S. P., McLeod, D., Plotkin, M., Reilly, U., Robinson, S., Schafer, J., Shepard, R. M., Smith, J. F., Stone, G. G., Subramanyam, C., Yoon, K., Yuan, W., Zaniewski, R. P. & Zook, C. (2013). Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorg. Med. Chem. Lett., 23, No. 10, pp. 2955-2961. Doi:
3. Łażewska, D., Kaleta, M., Schwed, J. S., Karcz, T., Mogilski, S., Latacz, G., Olejarz, A., Siwek, A., Kubacka, M., Lubelska, A., Honkisz, E., Handzlik, J., Filipek, B., Stark, H. & Kieć-Kononowicz, K. (2017). Biphenyloxyalkyl- piperidine and azepane derivatives as histamine H3 receptor ligands. Bioorg. Med. Chem., 25, No. 20, pp. 5341-5354. Doi:
4. Demchuk, O. P., Hryshchuk, O. V., Vashchenko, B. V., Radchenko, D. S., Kovtunenko, V. O., Komarov, I. V. & Grygorenko, O. O. (2019). Robust and scalable approach to 1,3-disubstituted pyridylcyclobutanes. Eur. J. Org. Chem., No. 34, pp. 5937-5949. Doi:
5. Molander, G. A. & Gormisky, P. E. (2008). Cross-coupling of cyclopropyl- and cyclobutyltrifluoroborates with aryl and heteroaryl chlorides. J. Org. Chem., 73, No. 19, pp. 7481-7485. Doi:
6. Molander, G. A., Colombel, V. & Braz, V. A. (2011). Direct alkylation of heteroaryls using potassium alkyland alkoxymethyltrifluoroborates. Org. Lett., 13, No. 7, pp. 1852-1855. Doi:
7. Lennox, A. J. J. & Lloyd-Jones, G. C. (2012). Organotrifluoroborate hydrolysis: Boronic acid release mechanism and an acid-base paradox in cross-coupling. J. Am. Chem. Soc., 134, No. 17, pp. 7431-7441. Doi:
8. Primer, D. N., Karakaya, I., Tellis, J. C. & Molander, G. A. (2015). Single-electron transmetalation: an enabling technology for secondary alkylboron cross-coupling. J. Am. Chem. Soc., 137, No. 6, pp. 2195-2198. Doi:
9. DeLano, T. J., Bandarage, U. K., Palaychuk, N., Green, J. & Boyd, M. J. (2016). Application of the photoredox coupling of trifluoroborates and aryl bromides to analog generation using continuous flow. J. Org. Chem., 81, No. 24, pp. 12525-12531. Doi:
10. Li, G.-X., Morales-Rivera, C. A., Wang, Y., Gao, F., He, G., Liu, P. & Chen, G. (2016). Photoredox-mediated Minisci C—H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chem. Sci., 7, No. 10, pp. 6407-6412. Doi:
11. Giustra, Z.X., Yang, X., Chen, M., Bettinger, H.F. & Liu, S.Y. (2019). Accessing 1,2-substituted cyclobutanes through 1,2-azaborine photoisomerization. Angew. Chem. Int. Ed., 58, No. 52, pp. 18918-18922. Doi:
12. Sun, X., Rai, R., Deschamps, J. R., Mackerell, A. D., Faden, A. I. & Xue, F. (2014). Boc-protected 1-(3- oxocycloalkyl)ureas via a one-step Curtius rearrangement: mechanism and scope. Tetrahedron Lett., 55, No. 4, pp. 842-844. Doi:
13. Radchenko, D.S., Pavlenko, S.O., Grygorenko, O.O., Volochnyuk, D.M., Shishkina, S. V., Shishkin, O. V. & Komarov, I. V. (2010). Cyclobutane-derived diamines: synthesis and molecular structure. J. Org. Chem., 75, No. 17, pp. 5941-5952. Doi: