Influence of nanobiocomposites on the exopolysaccharide matrix of Bacillus strains

TitleInfluence of nanobiocomposites on the exopolysaccharide matrix of Bacillus strains
Publication TypeJournal Article
Year of Publication2020
AuthorsSafronova, LA, Voychuk, SI, Brovarska, OS
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published8/2020

The effect of nanobiocomposites of carrageenan and galactomannan — perspective prebiotics on the formation of the extracellular polysaccharide complexes of Bacillus amyloliquefaciens subsp. plantarum UCM B-5139 and UCM B-5140 probiotic strains is studied. Analysis of data showed that bacterial strains had differences in the content of various sugar residues within their exopolysaccharide matrices. Both compounds, carrageenan and galactomannan, and their nanocomposites showed a potency to change the content of the extracellular matrix of bacilli probiotic cells. The effect of these compounds depended, presumably, on the natural structural properties of polysaccharides of these strains. However, the synthesis of extracellular polysaccharides by Bacillus probiotic strains was not bloc ked in the presence of the investigated nanocomposites. The obtained results indicate the possible dual (direct and indirect) action of polysaccharides and their nanocomposites in case of their use as the prebiotic components of synbiotic preparations: through the direct biologi cal action on the properties of the mammalian epithelial cells or gut microflora, and indirectly through the changes of properties of the extracellular polysaccharide matrix of probiotic strains.

KeywordsBacillus strains, nanobiocomposites, polysaccharide matrix, prebiotics, probiotics

1. Markowiak, P. & Śliżewska, K. (2017), Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9, 1021.
2. Rostami, F. M., Mousavi, H., Mousavi, M. R. N. & Shahsafi, M. (2018). Efficacy of probiotics in prevention and treatment of infectious diseases. Clin. Microbiol. Newsletter, 40, No. 12, pp. 97-103.
3. Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., Garisch, J., Kaufmann, P., Karakan, T., Khan, A. G., Kim, N., De Paula, J. A., Ramakrishna, B., Shanahan, F., Szajewska, H., Thomson, A. & Le Mair, A. (2017). WGO Practice Guideline — Probiotics and prebiotics. Milwaukee: WGO.
4. Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C. & Panwar, H. (2017). Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol., 8, 1490.
5. Safronova, L. A., Zelena, L. B., Klochko, V. V. & Reva, O. N. (2012). Does the applicability of Bacillus strains in probiotics rely upon their taxonomy? Can. J. Microbiol., 58, No. 10, pp. 212-219.
6. Safronova, L. A., Didenko, G. V., Podgorsky, V. S., Sukhov, B. G. & Dzhioev, Yu. P. (2014). Immunomodulatory activity of new galactose-containg polysaccharides. Lik. Sprava, No. 9-10, pp. 64-70 (in Russian).
7. Lesnichaya, M. V., Sukhov, B. G., Sapozhnikov, A. N., Safronova, L. A., Evseenko, O. V., Ilyash, V. M., Podgorskii, V. S. & Trofimov, B. A. (2014). New nanobiocomposites of ammonium magnesium phosphate and carrageenan as efficient prebiotics. Dokl. Chem., 457, Pt. 2, pp. 144–147.
8. Stoitsova, S., Ivanova, R. & Dimova, I. (2004). Lectin-binding epitopes at the surface of Escherichia coli K-12: examination by electron microscopy, with special reference to the presence of a olonic acid-like polymer. J. Basic Microbiol., 44, No. 4, pp. 296-304.
9. Stanley, P., Schachter, H. & Taniguchi, N. (2009). N-Glycans. In Varki A., Cummings R.D., Esko J.D. et al. (Eds.). Essentials of Glycobiology. Chapter 8. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. Retrieved from
10. Itakura, Y., Nakamura-Tsuruta, S., Kominami, J., Tateno, H. & Hirabayashi, J. (2017). Sugar-binding profiles of chitin-binding lectins from the hevein family: a comprehensive study. Int. J. Mol. Sci., 18, No. 6, 1160.
11. Sakurai, M. H., Kiyohara, H., Nakahara, Y., Okamoto, K. & Yamada, H. (2002). Galactose-containing polysaccharides from Dictyostelium mucoroides as possible acceptor molecules for cell-type specific galactosyl transferase. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 132, No. 3, pp. 541-549.
12. Luft, J. H. (1971). Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat. Rec., 171, pp. 369-416.
13. Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C. & Parsek, M. R. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog., 7, No. 1, e1001264.
14. Ophir, T. & Gutnick, D. L. (1994). A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol., 60, pp. 740-745.
15. Vu, B., Chen, M., Crawford, R. J. & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules., No. 14, pp. 2535-2554.