https://doi.org/10.15407/dopovidi2024.02.051 УДК 548.312.3

HO.O. Titob¹, https://orcid.org/0000-0001-9900-3751

B.B. Чумак², https://orcid.org/0000-0001-5892-3703

¹ Київський національний університет ім. Тараса Шевченка, Київ, Україна ² Житомирський державний університет ім. Івана Франка, Житомир, Україна E-mal: titov1952@ukr.net, chumak@ua.fm

Вплив заміщення атомів гадолінію на будову двошарової структури скандатів BaGd_{2-x}Dy_xSc₂O₇

Представлено членом-кореспондентом НАН України М.С. Слободяником

Методами рентгенівської порошкової дифракції встановлено умови ізовалентного заміщення атомів Gd на атоми Dy в A-позиції двошарової перовськітоподібної структури BaGd₂Sc₂O₇ за типом BaGd_{2-x}Dy_xSc₂O₇: $0 < x \le 0,4$. Методом Рітвельда визначено тетрагональну (просторова група P4₂/mnm) кристалічну структуру фаз BaGd_{2-x}Dy_xSc₂O₇ з x = 0,2 та 0,4. Основою кристалічної структури BaGd_{2-x}Dy_xSc₂O₇ є двовимірні (нескінченні в площині XY) перовськітоподібні блоки завтовшки в два шари сполучених вершинами деформованих октаедрів ScO₆. Атоми Ba розташовані лише в позиції 4f всередині перовськітоподібного блока, а атоми рідкісноземельних елементів — лише в позиції 8j на межі перовськітоподібних блоків. Суміжні перовськітоподібні блоки розділені шаром поліедрів (Gd,Dy)O₉ і утримуються разом за допомогою міжблокових зв `язків —O—(Gd,Dy)—O—. Встановлено, що ізовалентне заміщення атомів Gd на менші за розміром атоми Dy призводить до збільшення ступеня деформації міжблокових поліедрів (Gd,Dy)O₉. Такі зміни структури зумовлюють дестабілізацію міжблокового "зишття" і є одними з основних причин руйнування шаруватої перовськітоподібної структури фаз BaGd_{2-x}Dy_xSc₂O₇ при x > 0,4. Результати дослідження можуть бути використані для цілеспрямованого регулювання структурно залежних властивостей матеріалів на основі скандату BaGd₂Sc₂O₇.

Ключові слова: сполуки типу $A_{n+1}B_nO_{3n+1}$, шарувата перовськітоподібна структура, ізоморфізм, рентгенівська порошкова дифрактометрія.

Вступ. Особливості будови, зокрема деформованість, шаруватої перовськітоподібної структури (ШПС) представників сімейства сполук $A_{n+1}B_nO_{3n+1}$ (A = Ba, Sr, Ca, Ln, Na, K; B = Al, Ga, Fe, Ni, Cr, Sc, In, Ti, Sn, Zr, Hf, Pb, Mn; n -кількість октаедрів BO_6 в перовськітоподібному блоці (n = 1 - 3)) обумовлює наявність у них широкого комплексу фізико-

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2024. № 2: 51—59

Цитування: Тітов Ю.О., Чумак В.В. Вплив заміщення атомів гадолінію на будову двошарової структури скандатів BaGd_{2-x}Dy_xSc₂O₇. Допов. Нац. акад. наук Укр. 2024. № 2. С. 51—59. https://doi.org/10.15407/ dopovidi2024.02.051

[©] Видавець ВД «Академперіодика» НАН України, 2024. Стаття опублікована за умовами відкритого доступу за ліцензією СС ВУ-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

хімічних властивостей, який включає, зокрема, колосальний магнітоопір, надпровідність, діелектричні та резистивні властивості, іонну провідність, іонообмінні та люмінесцентні властивості, фотокаталітичну активність і низку інших [1—5].

Одним із шляхів регулювання деформованості ШПС і, відповідно, структурно чутливих властивостей сполук та фаз типу $A_{n+1}B_nO_{3n+1}$ є ізоморфні заміщення атомів у їх структурі. Для відомих на сьогодні скандатів $A^{II}Ln_2Sc_2O_7$ ($A^{II} = Sr$, Ln = La - Tb; $A^{II} = Ba$, Ln = La - Gd) з двошаровою ШПС [6, 7] досить детально встановлено характер впливу ізовалентного заміщення атомів A-позиції на будову ШПС Sr,La-вмісних скандатів Sr_{1-x}Ca_xLa₂Sc₂O₇ [8], SrLa_{2-x}Dy_xSc₂O₇ [9] та двошарової ШПС Ва,La-вмісного скандату BaLa_{2-x}Dy_xSc₂O₇ [10].

У рядах скандатів $A^{II}Ln_2Sc_2O_7$ з ШПС ступінь деформованості структури зростає зі зменшенням розміру атомів РЗЕ, а найбільша розмірна невідповідність A- і B-підґраток ШПС зафіксована для скандату $BaGd_2Sc_2O_7$ [6, 7]. Проте дотепер немає будь-яких даних щодо впливу ізоморфних заміщень на особливості будови ШПС ізоморфнозаміщених фаз на основі $BaGd_2Sc_2O_7$.

Мета даної роботи — визначення умов ізовалентного заміщення атомів Gd в ШПС $BaGd_2Sc_2O_7$ за типом $BaGd_{2-x}Dy_xSc_2O_7$ і дослідження його впливу на особливості будови двошарової ШПС скандатів $BaGd_{2-x}Dy_xSc_2O_7$.

ВаGd_{2-x}Dy_xSc₂O₇ синтезували шляхом сумісної кристалізації (випаровування в процесі інтенсивного перемішування) суміші водних розчинів ацетату Ва, нітратів Gd, Dy та Sc зі співвідношенням Ва : Gd : Dy : Sc : = 1 : 2 - x : x : 2 з подальшою термообробкою утвореного продукту на газовому пальнику для видалення основної маси оксидів нітрогену. Отриману таким способом шихту перетирали, пресували у вигляді дисків і піддавали послідовному триступінчатому (з перетиранням та перепресуванням зразків після кожної стадії термообробки) прожарюванню за температури 1173 К (2 год) та 1573 К (2 год + 2 год). Як вихідні у дослідженні використано ацетат Ва та нітрати Gd, Dy та Sc марок "хч".

Рентгенівські дифракційні спектри полікристалічних зразків записано на дифрактометрі "XRD-6000" ("Shimadzu", Японія) в дискретному режимі (крок сканування 0,02°, експозиція в точці 5 с, інтервал кутів $2\theta = 20-74^{\circ}$) на мідному фільтрованому (дуговий графітовий монохроматор перед лічильником) Си K_a -випромінюванні. Кристалічну структуру одержаних зразків визначено методом Рітвельда. Первинне оброблення дифракційних спектрів та структурні розрахунки виконано з використанням апаратно-програмного комплексу як описано в [11].

Інтенсивність сигналу другої оптичної гармонік
и $I_{2\omega}$ лазерного випромінювання вимірювали на полікристалічних зразках за методикою [12] з використанням Nd:
YAG лазера (λ_{ω} = 1064 нм, $\lambda_{2\omega}$ = 532 нм, частота повторення 12,5 Г
ц у режимі модуляції добротності).

У результаті рентгенофазового аналізу термооброблених ізовалентнозаміщених зразків $BaGd_{2-x}Dy_xSc_2O_7$ виявлено область фаз з ШПС при $0 \le x \le 0,4$. Дифрактограми фаз $BaGd_{2-x}Dy_xSc_2O_7$ із ШПС подібні до дифрактограми незаміщеного $BaGd_2Sc_2O_7$ (пр. гр. $P4_2/mnm$) [7], а їх індексування показало належність їх ШПС до тетрагональної сингонії. Систематика погасань відбиттів на дифрактограмах відповідає таким можливим просторовим групам: центросиметричній $P4_2/mnm$ та нецентросиметричним $P4_2nm$ або $P\overline{4n2}$.

Тест на генерацію сигналу другої оптичної гармоніки випромінювання Nd:YAG лазера показав, що відносна інтенсивність сигналу $I_{2\omega}$ для BaGd_{2-x}Dy_xSc₂O₇ (0 < x ≤ 0,4) не переви-

щує 0,01 $I_{2\omega}$ для нецентросиметричної сполуки La₄Ti₄O₁₄ із ШПС. Така незначна величина $I_{2\omega}$ однозначно свідчить про належність ШПС фаз BaGd_{2-x}Dy_xSc₂O₇ (як і вихідної сполуки BaGd₂Sc₂O₇) до центросиметричної просторової групи P4₂/mnm.

Зразки валового складу $BaGd_{2-x}Dy_xSc_2O_7$ з x > 0,4 неоднофазні і містять (крім фази з ШПС) додаткові фазу зі структурою типу перовськіту та фазу зі структурою типу CaFe₂O₄, кількісний вміст яких зростає зі збільшенням значення x. Загалом процес руйнування ШПС для $BaGd_{2-x}Dy_xSc_2O_7$ з x > 0,4 можна описати рівнянням

 $BaGd_{2-x}Dy_{x}Sc_{2}O_{7} \rightarrow (Gd_{a}Dy_{b})ScO_{3} + Ba(Gd_{c}Dy_{d}Sc)O_{4},$

де a + c = 2 - x, a b + d = x.

Виходячи з даних про розмір області з ШПС у системі $BaGd_{2-x}Dy_xSc_2O_7$ ($0 \le x \le 0,4$) об'єктами дослідження впливу ізовалентного заміщення атомів Gd на атоми Dy були вибрані фази складу $BaGd_{1.8}Dy_{0.2}Sc_2O_7$ та $BaGd_{1.6}Dy_{0.4}Sc_2O_7$.

Початкову оцінку координат атомів для вихідних моделей структури BaGd_{1,8}Dy_{0,2}Sc₂O₇ та BaGd_{1,6}Dy_{0,4}Sc₂O₇ виконано за відомими структурними даними для незаміщеного BaGd₂Sc₂O₇ (пр. гр. *P*4₂/*mnm*) [7]. Зіставлення експериментальних і розрахованих для таких моделей структури інтенсивностей показало їх задовільну збіжність. Результати процедури уточнення моделей наведено у табл. 1—3. Встановлений у результаті розрахивить тально заданому.

Визначення способу розподілу атомів Ва і рідкісноземельних елементів (РЗЕ) по кристалографічних позиціях 4f і 8j в ШПС ВаGd_{2-x}Dy_xSc₂O₇ було проведено шляхом розрахунку величин сум валентностей зв'язків (CB3) цих атомів у ймовірних поліедрах BaO₁₂ та BaO₉ і (GdDy)O₁₂ та (Gd,Dy)O₉. Валентність зв'язку (s) розраховано за формулою $s = \exp((R_0 - R)/B)$ [14], де R_0 — табульоване значення довжини одновалентного зв'язку (нм), R — експериментальне значення довжини зв'язку (нм), а B — табульоване значення довжини зв'язку (сВ3) розраховано підсумовуванням валентності усіх зв'язків Me—O: CB3 = $\Sigma s \cdot n$, де n — кількість зв'язків цього типу. У випадку одночасного заповнення однієї позиції атомами Gd та Dy під час розрахунку CB3 стандартне значення R_0 коректувалося за рівнянням $R_0 = R_0(Gd) \cdot K(Gd) + R_0(Dy) \cdot K(Dy)$, де $R_0(Gd)$ та $R_0(Dy)$ — табульовані величини довжини одновалентного зв'язку одновалентного зв'язку величини довжини сСВ3 розраховано підсумовуванням валентності усіх зв'язків ме-O: CB3 = $\Sigma s \cdot n$, де n — кількість зв'язків цього типу. У випадку одночасного заповнення однієї позиції атомами Gd та Dy під час розрахунку CB3 стандартне значення R_0 коректувалося за рівнянням $R_0 = R_0(Gd) \cdot K(Gd) + R_0(Dy) \cdot K(Dy)$, де $R_0(Gd)$ та $R_0(Dy)$ — табульовані величини довжини одновалентного зв'язку, а K(Gd) та K(Dy) — величини заповнення цієї позиції.

Як випливає з даних табл. 4, величини CB3 атомів Ва та P3E в гіпотетичних поліедрах BaO_9 та LnO_{12} істотно відмінні від їх хімічних валентностей, тоді як у разі локалізації атомів Ва в позиції 4*f*, а атомів P3E в позиції 8*j* величини CB3 цих елементів близькі до їх валентностей. Аналогічний спосіб розподілу атомів Ва та Gd має місце і в ШПС BaGd₂Sc₂O₇[7].

Кристалічна структура $BaGd_{1,8}Dy_{0,2}Sc_2O_7$ та $BaGd_{1,6}Dy_{0,4}Sc_2O_7$ утворена двовимірними (нескінченними в площині XY) перовськітоподібними блоками, кожен з яких складається з двох шарів деформованих октаедрів ScO_6 (рис. 1, *a*). Октаедри в блоках з'єднані між собою лише вершинами таким чином, що кожний октаедр має п'ять спільних вершин із суміжними октаедрами одного і того ж блока. Сусідні перовськітоподібні блоки зсунуті один відносно іншого на пів ребра перовськітового куба в напрямку діагоналі площини XY і чергуються вздовж осі Z.

		Ba	IGd ₂ Sc ₂ O ₇ [7]		BaGd _{1,8} Dy,	_{0,2} Sc ₂ O ₇			BaGd _{1,6} Dy	$_{0,4}$ Sc ₂ O ₇	
NTOM	Позиція	X	Y	Ŋ	Заповнення позиції	X	Y	Ν	Заповнення позиції	X	Υ	Ζ
Ba	4f	0,2673(4)	0,2673(4)	0	1	0,2589(3)	0,2589(3)	0	1	0,2584(3)	0,2584(3)	0
Gd	8j	0,2713(3)	0,2713(3)	0,1865(2)	0,9	0,2756(2)	0,2756(2)	0,1858(2)	0,8	0,2765(3)	0,2765(3)	0,1856(2)
Dy	8j				0,1	0,2756(2)	0,2756(2)	0,1858(2)	0,2	0,2765(3)	0,2765(3)	0,1856(2)
Sc	8j	0,2624(3)	0,2624(3)	0,3917(2)	1	0,2568(2)	0,2568(2)	0,3949(3)	1	0,2586(3)	0,2586(3)	0,3943(2)
O(1)	4g	0,780(2)	0,220(2)	0	1	0,780(2)	0,220(2)	0	1	0,780(2)	0,220(2)	0
O(2)	8j	0,198(3)	0,198(3)	0,286(2)	1	0,194(2)	0,194(2)	0,285(3)	1	0,191(3)	0,191(3)	0,284(2)
O(3)	8h	0	0,5	0,110(2)	1	0	0,5	0,118(2)	1	0	0,5	0,119(2)
O(4)	4e	0	0	0,150(3)	1	0	0	0,150(2)	1	0	0	0,152(2)
O(5)	4e	0	0	0,401(3)	1	0	0	0,405(3)	1	0	0	0,404(3)
Іростор рупа	OBa	$P4_2$	/ттт (Nº 1.	36)		P4 ₂ /mnm ((Nº 136)			Р4 ₂ /тпт ((№ 136)	
Іарамет ристалі ратки, ғ	ри Чної ІМ	<i>c a</i>	t = 0.5776(1) t = 1.9941(6)			a = 0.577 c = 1.994	⁷ 51(4) 42(2)			a = 0.577 c = 1.992	⁷ 51(7) 27(3)	
Іезалеж ідбиття	iH		127			66				66		
агальни ютропн актор, 1	ий іий <i>В</i> нм ²	0	$(39(3) \cdot 10^{-3})$	5		0,32(2) .	$\cdot 10^{-2}$			0,14(3) .	$\cdot 10^{-2}$	
актор едостон ^w	зірності		0,053			0,03	υ			0,03	7	

54

ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2024. No. 2

_									
	x	Ba—2O1	Ba—2O5	Ba—4O3	Ba—2O4	Ba—2O1	Ln—O2*	Ln — O5	Ln - O4
ſ	0[7]	0,283(1)	0,274(1)	0,300(2)	0,370(3)	0,297(2)	0,207(1)	0,256(1)	0,233(2)
	0,2	0,278(2)	0,273(2)	0,312(2)	0,366(3)	0,302(2)	0,209(2)	0,258(2)	0,236(1)
	0,4	0,277(1)	0,275(1)	0,313(3)	0,369(3)	0,302(3)	0,208(2)	0,255(1)	0,236(2)
	x	Ln—2O2	Ln—2O3	Ln—2O2	Sc - O4	Sc—2O3	Sc—O1	Sc—O5	Sc—O2
	0[7]	0,253(2)	0.256(3)	0.336(2)	0.211(2)	0.205(1)	0.216(2)	0.215(2)	0.217(3)
			-)=(-)	0,000(2)	0,===(=)	0,200(1)	0,210(2)	0,210(2)	0,217(0)
	0,2	0,249(2)	0,246(3)	0,341(2)	0,218(1)	0,206(2)	0,210(2)	0,211(1)	0,225(2)
	0,2 0,4	0,249(2) 0,248(2)	0,246(3) 0,245(2)	0,341(2) 0,344(3)	0,218(1) 0,218(2)	0,206(2) 0,206(1)	0,210(2) 0,211(2)	0,211(1) 0,212(2)	0,225(2) 0,226(3)

Таблиця 2. Основні міжатомні відстані (нм) в кристалічних структурах BaGd_{2-x}Dy_xSc₂O₇

* Міжблокова відстань (O2 — атом оксигену октаедра ScO₆ із суміжного перовськітоподібного блока).

Таблиця 3. Середні міжатомні відстані і ступінь деформації поліедрів $MeO_n(\Delta)$ в кристалічній структурі $BaLn_2Sc_2O_7[7]$ та $BaGd_{2-x}Dy_xSc_2O_7$

	BaO ₁₂		LnO ₉		ScO ₆		
Ln	Середня відстань Ва—О, нм	$\Delta \cdot 10^4$	Середня відстань Ln—O, нм	$\Delta \cdot 10^4$	Середня відстань Sc—O, нм	$\Delta \cdot 10^4$	
La	0,299	60	0,274	208	0,213	34	
Pr	0,300	53	0,271	209	0,212	46	
Nd	0,301	59	0,269	227	0,212	19	
Sm	0,302	83	0,268	227	0,212	10	
Eu	0,306	80	0,265	249	0,211	7	
Gd	0,304	103	0,265	237	0,211	7	
<i>x</i> = 0,2	0,307	98	0,264	268	0,213	10	
<i>x</i> = 0,4	0,308	103	0,264	288	0,213	11	

Примітка. Ступінь деформації окта
едрів \underline{MeO}_n у кристалічній структурі розраховано за формуло
ю $\Delta = 1/n\Sigma[(R_{\rm i}-\overline{R})/\overline{R}]^2$ ($R_{\rm i}$ — відстань
 Me—О, \overline{R} — середня відстань
 Me—О, n— координаційне число) [13].

Таблиця 4. Розраховані величини сум валентностей зв'язків (CB3) для атомів Ва та РЗЕ в поліедрах MeO_n ШПС $BaGd_{2-x}Dy_xSc_2O_7$

		CB3					
x	R_0 (Gd _{2-x} Dy _x), нм	Ι	Позиція 4 <i>f</i>	Позиція 8ј			
		BaO ₁₂	LnO ₁₂	BaO ₉	LnO ₉		
0	0,2065	1,98	1,09	5,24	2,89		
0,2	0,2059	1,87	1,01	5,45	2,96		
0,4	0,2052	1,84	0,98	5,59	2,98		

Примітка. Для зв'язку Ва—О R_0 = 0,2285 нм, для зв'язку Gd—О R_0 = 0,2065 нм, для зв'язку Dy—О R_0 = 0,2001 нм [14].

Рис. 1. Кристалічна структура $BaGd_{1,6}Dy_{0,4}Sc_2O_7$ у вигляді октаедрів ScO_6 та атомів Ba (чорні кружечки) і атомів Gd та Dy (сірі кружечки) (*a*) і будова міжблокової межі в ШПС $BaGd_{1,8}Dy_{0,2}Sc_2O_7$ у вигляді октаедрів ScO_6 та атомів Gd та Dy (сірий кружечок) (*б*)

Рис. 2. Залежність ступеня деформації міжблокових поліедрів LnO₉ від величини середнього іонного радіуса атомів РЗЕ у двошаровій ШПС BaGd_{2-x}Dy_xSc₂O₇

Безпосереднього зв'язку між октаедрами суміжних блоків немає, між ними розташований шар поліедрів (Gd,Dy)O₉ (див. рис. 1), а блоки утримуються разом за допомогою міжблокових зв'язків —O—(Gd,Dy)—O— (див. рис. 1, δ). Необхідність утворення такого типу зв'язків обумовлює зсув атомів Gd та Dy з кубооктаедричних пустот майже до межі перовськітоподібного блока. З цієї причини їх координаційне число знижується до 9.

В оточення атомів Gd та Dy входять вісім (чотири O2, 2O3, 1O4, 1O5) атомів оксигену того ж самого перовськітоподібного блока на відстанях 0,236—0,344 нм (див. табл. 2) і один (O2) атом оксигену сусіднього блока (див. табл. 2, рис. 1, δ). Слід відзначити, що в поліедрі (Gd,Dy)O₉ два атоми O2 знаходяться значно далі (0,341(2)—0,344(3) нм) (див. табл. 2) від атома P3E, ніж решта атомів оксигену, тому координаційне число атомів P3E можна інтерпретувати як 7 + 2.

Довжина міжблокового зв'язку (Gd, Dy)—O2 (0,208—0,209 нм) в ШПС ВаGd_{2-x}Dy_xSc₂O₇ близька до мінімально відомих відстаней (Gd, Dy)—O і значно коротша за відомі відстані Ва—O. Це підтверджує зроблений на підставі результатів розрахунку CB3 висновок про повністю впорядковане розташування атомів Ва та РЗЕ у ШПС ВаGd_{2-x}Dy_xSc₂O₇ із локалізацією атомів Ва лише у внутрішньоблоковому просторі перовськітоподібного блока, де їх координаційний поліедр являє собою деформований кубооктаедр ВаO₁₂, а атомів РЗЕ лише у поліедрах (Gd,Dy)O₉ на границях перовськітоподібних блоків. Вірогідною причиною такого способу розподілу атомів Ва та РЗЕ у двошаровій ШПС ВаGd_{2-x}Dy_xSc₂O₇ є, очевидно, прагнення відносно менших атомів РЗЕ заселяти менші за розміром поліедри MeO_9 .

Аналіз наведених у цій роботі даних про будову структури фаз $BaGd_{1,8}Dy_{0,2}Sc_2O_7$ і BaGd_{1,6}Dy_{0,4}Sc_2O_7, а також структурних даних для скандату $BaGd_2Sc_2O_7$ [7] виявив, що заміщення атомів Gd на менші атоми Dy в ШПС $BaGd_2Sc_2O_7$ зумовлює зростання ступеня деформації міжблокових поліедрів (Gd,Dy)O₉ (див. табл. 3, рис. 2).

Слід відзначити, що в ряду незаміщених скандатів $BaLn_2Sc_2O_7$ з ШПС максимальні значення ΔLnO_9 спостерігаються у кінцевих членів ряду (Ln = Eu, Gd) і є одними з найвищих серед сполук сімейства $A_{n+1}B_nO_{3n+1}$ (див. табл. 3). Подальше (при x > 0,4) збільшення ступеня деформації міжблокових поліедрів (Gd,Dy)O₉ спричинятиме таке

зростання напруженості в міжблоковому просторі ШПС $BaGd_{2-x}Dy_xSc_2O_7$, яка руйнує її. Це дає підстави для висновку, що саме цей чинник зумовлює обмеженість області твердих розчинів $BaGd_{2-x}Dy_xSc_2O_7$ з ШПС (0 < $x \le 0,4$) і неможливість утворення скандату $BaDy_2Sc_2O_7$ із ШПС.

Входження менших атомів Dy в ШПС $BaGd_2Sc_2O_7$ практично не змінює довжину міжблокової відстані (Gd,Dy)—O (див. табл. 2), хоча в ШПС La-вмісних твердих розчинів $BaLa_{2-x}Dy_xSc_2O_7$ має місце її зменшення зі збільшенням ступеня заміщення атомів La [10]. Імовірною причиною цієї відмінності є той факт, що довжина міжблокової відстані Gd—O для $BaGd_2Sc_2O_7$ вже є найменшою серед усіх відомих індивідуальних скандатів $BaLn_2Sc_2O_7$ (Ln = La — Gd) з ШПС [7]. Подальше зменшення довжини відстані між блоками спричинить з'єднання суміжних двошарових перовськітоподібних блоків і перетворення двовимірної ШПС у тривимірну структуру перовськіту.

Висновок. Встановлено межі ізовалентного заміщення атомів Gd на атоми Dy у двошаровій ШПС скандату BaGd₂Sc₂O₇ за типом BaGd_{2-x}Dy_xSc₂O₇ і методом Рітвельда визначено будову ШПС фаз BaGd_{1,8}Dy_{0,2}Sc₂O₇ та BaGd_{1,6}Sm_{0,4}Sc₂O₇. Аналіз одержаних даних показав наявність взаємозв'язку між ступенем деформації міжблокових поліедрів LnO₉ і ступенем ізовалентного заміщення атомів Gd. Максимальні значення Δ LnO₉ і мінімальні довжини міжблокової відстані Ln—O2 у ШПС фаз BaGd_{2-x}Dy_xSc₂O₇ дають підстави очікувати наявність у них також екстремальних параметрів структурно чутливих властивостей.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Schaak R.E., Mallouk T.E. Perovskites by design: a toolbox of solid-state reactions. *Chem. Mater.* 2002. 14, № 4. P. 1455—1471. https://doi.org/10.1021/cm010689m
- 2. Ding P., Li W., Zhao H., Wu C., Zhao L., Dong B., Wang S. Review on Ruddlesden—Popper perovskites as cathode for solid oxide fuel cells. *J. Phys.: Materials.* 2021. **4**, № 2. 022002. https://doi.org/10.1088/2515-7639/ abe392
- 3. Xiao H., Liu P., Wang W., Ran R., Zhou W., Shao Z. Ruddlesden—Popper perovskite oxides for photocatalysisbased water splitting and wastewater treatment. *Energy Fuels.* 2020. **34**, № 8. P. 9208—9221. https://doi. org/10.1021/acs.energyfuels.0c02301
- Kim I.-S., Nakamura T., Itoh M. Humidity sensing effects of the layered oxides SrO·(LaScO₃)_n (n = 1,2, ∞).
 J. Ceram. Soc. Jap. 1993. 101, № 1175. P. 800—803. https://doi.org/10.2109/jcersj.101.800
- 5. Kamimura S., Yamada H., Xu C.-N. Strong reddish-orange light emission from stress-activated $Sr_{n+1}Sn_nO_{3n+1}:Sm^{3+}$ ($n = 1, 2, \infty$) with perovskite-related structures. *Appl. Phys. Lett.* 2012. **101**, Nº 9. 091113. https://doi.org/10.1063/1.4749807
- 6. Тітов Ю.О., Білявина Н.М., Марків В.Я., Слободяник М.С., Краєвська Я.А., Чумак В.В. Синтез та визначення кристалічної структури шаруватих скандатів SrLn₂Sc₂O₇. Допов. Нац. акад. наук Укр. 2009. № 3. С.155—161.
- 7. Тітов Ю.О., Білявина Н.М., Марків В.Я., Слободяник М.С., Краєвська Я.А., Ящук В.П., Чумак В.В. Синтез та визначення кристалічної структури BaLn₂Sc₂O₇. Допов. Нац. акад. наук Укр. 2009. № 5. С. 172—178.
- 8. Titov Y., Belyavina N., Slobodyanik M., Nakonechna O., Strutynska N. Effect of strontium atoms substitution on the features of two-slab structure of Sr_{1-x}Ca_xLa₂Sc₂O₇ scandates. *Fr.-Ukr. J. Chem.* 2021. **9**, № 1. P. 44—50. https://doi.org/10.17721/fujcV9I1P44-50
- 9. Тітов Ю.О., Білявина Н.М., Слободяник М.С., Чумак В.В., Наконечна О.І. Синтез та кристалічна структура ізовалентнозаміщених шаруватих скандатів SrLa_{2-x}Dy_xSc₂O₇. *Voprosy khimii i khimicheskoi tekhnologii*. 2019. №. 6. С. 228—235. https://doi.org/10.32434/0321-4095-2019-127-6-228-235
- 10. Тітов Ю.О., Чумак В.В., Тимошенко М.В. Синтез і кристалічна структура двошарових скандатів BaLa_{2-x}Dy_xSc₂O₇. Допов. Нац. акад. наук Укр. 2022. № 3. С. 68—76. https://doi.org/10.15407/ dopovidi2022.03.068

- 11. Dashevskyi M., Boshko O., Nakonechna O., Belyavina N. Phase transformations in equiatomic Y—Cu powder mixture at mechanical milling. *Metallofiz. Noveishie Tekhnol.* 2017. **39**, № 4. P. 541—552. https://doi. org/10.15407/mfint.39.04.054
- 12. Kurtz S.K., Perry T.T. A powder technique for the evaluation of nonlinear optical materials. *J. Appl. Phys.* 1968. **39**, № 8. P. 3798—3813. https://doi.org/10.1063/1.1656857
- 13. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst.* 1976. A32, № 5. P. 751–767. https://doi.org/10.1107/S0567739476001551
- 14. Brown I.D., Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. *Acta Cryst.* 1985. **B41**, № 4. P. 244–247. https://doi.org/10.1107/S0108768185002063

Надійшло до редакції 01.11.2023

REFERENCES

- 1. Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. https://doi.org/10.1021/cm010689m
- Ding, P., Li, W., Zhao, H., Wu, C., Zhao, L., Dong, B. & Wang, S. (2021). Review on Ruddlesden—Popper perovskites as cathode for solid oxide fuel cells. J. Phys.: Materials, 4, No. 2, 022002. https://doi.org/10.1088/2515-7639/abe392
- Xiao, H., Liu, P., Wang, W., Ran, R., Zhou, W. & Shao, Z. (2020). Ruddlesden—Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. Energy Fuels, 34, No. 8, pp. 9208-9221. https:// doi.org/10.1021/acs.energyfuels.0c02301
- 4. Kim, I.-S., Nakamura, T. & Itoh, M. (1993). Humidity sensing effects of the layered oxides $\text{SrO}(\text{LaScO}_3)_n$ ($n = 1, 2, \infty$). J. Ceram. Soc. Jap., 101, No. 1175, pp. 800-803. https://doi.org/10.2109/jcersj.101.800
- 5. Kamimura, S., Yamada, H. & Xu, C.-N. (2012). Strong reddish-orange light emission from stress-activated $Sr_{n+1}Sn_nO_{3n+1}:Sm^{3+}$ ($n = 1, 2, \infty$) with perovskite-related structures. Appl. Phys. Lett., 101, No. 9, 091113. https://doi.org/10.1063/1.4749807
- 6. Titov, Y. O., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S., Krayevska, Ya. A. & Chumak, V. V. (2009). Synthesis and determination of the crystal structure of layer scandates SrLn₂Sc₂O₇. Dopov. Nac. akad. nauk Ukr., No. 3, pp.155-161 (in Ukrainian).
- Titov, Y. O., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S., Krayevska, Ya. A., Yaschuk, V. P. & Chumak, V. V. (2009). Synthesis and crystal structure of BaLn₂Sc₂O₇. Dopov. Nac. akad. nauk Ukr., No. 5, pp.172-178 (in Ukrainian).
- Titov, Y., Belyavina, N., Slobodyanik, M., Nakonechna, O. & Strutynska, N. (2021). Effect of strontium atoms substitution on the features of two-slab structure of Sr_{1-x}Ca_xLa₂Sc₂O₇ scandates. Fr.-Ukr. J. Chem., 9, No. 1, pp. 44-50. https://doi.org/10.17721/fujcV9I1P44-50
- 9. Titov, Y. O., Belyavina, N. M., Slobodyanik, M. S., Chumak, V. V. & Nakonechna, O. I. (2019). Synthesis and crystal structure of isovalently substituted slab SrLa_{2-x}Dy_xSc₂O₇ scandates. Voprosy khimii i khimicheskoi tekhnologii, No. 6, pp. 228-235 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-127-6-228-235
- Titov, Y. A., Chumak, V. V. & Tymoshenko, M. V. (2022). Synthesis and crystal structure of two-slab scandates BaLa_{2-x}Dy_xSc₂O₇. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 68—76 (in Ukrainian). https://doi.org/10.15407/ dopovidi2022.03.068
- Dashevskyi, M., Boshko, O., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y—Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. https:// doi.org/10.15407/mfint.39.04.054
- 12. Kurtz, S. K. & Perry, T. T. (1968). A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys., 39, No. 8, pp. 3798-3813. https://doi.org/10.1063/1.1656857
- 13. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, No. 5, pp. 751-767. https://doi.org/10.1107/S0567739476001551
- 14. Brown, I. D. & Altermatt, D. (1985). Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst., B41, No. 4, pp. 244-247. https://doi.org/10.1107/S0108768185002063

Received 01.11.2023

*Y.A. Titov*¹, https://orcid.org/0000-0001-9900-3751

*V.V. Chumak*², https://orcid.org/0000-0001-5892-3703

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine ²Zhytomyr Ivan Franko State University, Zhytomyr, Ukraine E-mail: titov1952@ukr.net, chumak@ua.fm

EFFECT OF SUBSTITUTION OF GADOLINIUM ATOMS ON THE TWO-SLAB STRUCTURE OF SCANDATES BaGd_{2-x}Dy_xSc₂O₇

The conditions of isovalent substitution of Gd atoms for Dy atoms in the *A*-positions of the BaGd₂Sc₂O₇ two-slab perovskite-like structure of the BaGd_{2-x}Dy_xSc₂O₇ type ($0 < x \le 0.4$) have determined by X-ray powder diffraction methods. Tetragonal crystal structure (space group $P4_2/mnm$) of the BaGd_{2-x}Dy_xSc₂O₇ phases with *x* equal to 0.2, and 0.4 was determined by the Rietveld method. The crystal structure of BaGd_{2-x}Dy_xSc₂O₇ is based on two-dimensional (infinite in the *XY* plane) perovskite-like blocks with a thickness of two slabs of deformed ScO₆ octahedra connected by vertices. Ba atoms are located only at 4*f* position inside the perovskite block, while rare earth element atoms are located only at position 8*j* at the perovskite block boundary. The adjacent perovskite-like blocks are separated by a slab of (Gd,Dy)O₉ polyhedra and held together by -O-(Gd,Dy)-O- interblock bonds. It is established that the isovalent substitution of Gd atoms by smaller Dy atoms leads to an increase in the degree of deformation of the interblocks polyhedra (Gd,Dy)O₉. Such structural changes destabilize the interblock "crosslinking" and are one of the main reasons for the destruction of the slab perovskite-like structure of BaGd_{2-x}Dy_xSc₂O₇ phases at x > 0.4. The research results could be used for purposeful regulation of structurally dependent properties of materials based on the BaGd₂Sc₂O₇ scandate.

Keywords: compounds of $A_{n+1}B_nO_{3n+1}$ type, slab perovskite-like structure. isomorphism, X-ray powder diffraction.