Coronavirus S antigen as a marker of effective vaccination


  • V.G. Spyrydonov China-Ukraine Life Sciences Institute, Zuji, China
  • M.D. Melnychuk All-Ukrainian Scientific-Educational Consortium, Vinnitsa



COVID-19, coronavirus, recombinant antigens, S. cerevisiae, virus neutralizing antibodies, SinoVac, ELISA


A yeast analog of the new coronavirus (SARS-CoV-2) Spike antigen, responsible for the binding to the ACE-2 cellular receptor is obtained. The identity of the yeast analog compared to the native viral one is demonstrated in indirect ELISA and Western blot analysis using commercial rabbit anti-SARS-CoV-2 S specific serum. The immunological reactivity of the yeast S antigen has been analyzed in indirect ELISA with volunteer Sera (n = 8) collected before the vaccination and on day 28 after the first vaccination. Vaccination was carried out with the Chinese Sinovac (CoronaVac) vaccine in two stages with an interval of 14 days. The results of the analysis have shown that the antibody titer on day 28 after the first vaccination is 4 times higher than before the vaccination, which confirms the seroconversion due to the use of the vaccine and indirectly serves as a marker of the effective vaccination with the formation of virus-neutralizing antibodies.


WHO Coronavirus (COVID-19) Dashboard. World Health Organization. Retrieved from https://covid19.

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W. J., Wang, D., Xu, W., Holmes, E. C., Gao, G. F., Wu, G., Chen, W., Shi, W. & Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395, pp. 565-574.

Shih, Y.-P., Chen, C.-Y., Liu, S.-J., Chen, K.-H., Lee, Y.-M., Chao, Y.-C. & Chen, Y.-M. A. (2006). Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus. J. Virol., 80, No. 21, рp. 10315-10324. JVI.01138-06

Premkumar, L., Segovia-Chumbez, B., Jadi, R., Martinez, D. R., Raut, R., Markmann, A., Cornaby, C., Bartelt, L., Weiss, S., Park, Y., Edwards, C. E., Weimer, E., Scherer, E. M., Rouphael, N., Edupuganti, S., Weiskopf, D., Tse, L. V., Hou, Y. J., Margolis, D., Sette, A., Collins, M. H., Schmitz, J., Baric, R. S. & de Silva, A. M. (2020). The receptor-binding domain ofthe viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol., 5, eabc8413. abc8413

Walls, A. C., Tortorici, M. A., Snijder, J., Xiong, X., Bosch B.-J., Rey, F. A. & Veesler, D. (2017). Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. USA, 114, No. 42, pр. 11157-11162.

Chen, W. H., Hotez, P. J. & Bottazzi, M. A. (2020). Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum. Vaccin. Immunother., 16, No. 6, рp. 1239-1242. 0.1740560

Liu, Y., Liu, J., Plante, K. S., Plante, J. A., Xie, X., Zhang, X., Ku, Z., An, Z., Scharton, D., Schindewolf, C., Menachery, V. D., Shi, P.-Y. & Weaver, S. C. (2021).The N501Y spike substitution enhances SARS-CoV-2 transmission. bioRxiv.

Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. Cc., Muecksch, F., Rutkowska, M., Hoffmann, H.-H., Michailidis, E., Gaebler, C., Agudelo, M., Cho, A., Wang, Z., Gazumyan, A., Cipolla, M., Luchsinger, L., Hillyer, C. D., Caskey, M., Robbiani, D. F., Rice, C. M., Nussenzweig, M. C., Hatziioannou, T. & Bieniasz, P. D. (2021). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife, 9, e61312.

Dai, L. & Gao, G. F. (2021). Viral targets for vaccines against COVID-19. Nat. Rev. Immunol., 21, No. 2, pp. 73-82.

Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., Han, W., Chen, Z., Tang, R., Yin, W., Chen, X., Hu, Y., Liu, X., Jiang, C., Li, J., Yang, M., Song, Y., Wang, X., Gao, Q. & Zhu, F. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis., 21, рр. 181-192. https://doi. org/10.1016/ S1473-3099(20)30843-4

Soulard, A., Lechler, T., Spiridonov, V., Shevchenko, A., Shevchenko, A., Li, R. & Winsor, B. (2002). Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro. Mol. Cell Biol., 22, pp. 7889-7906. mcb.22.22.7889-7906.2002

Wild D., (Ed.). (2013). The immunoassay handbook (4th ed.). Amsterdam: Elsevier.

Farnós, O., Venereo-Sánchez, A., Xu, X., Chan, C., Dash, S., Chaabane, H., Sauvageau, J., Brahimi, F., Saragovi, U., Leclerc, D. & Kamen, A. A. (2020). Rapid high-yield production of functional SARS-CoV-2 receptor binding domain by viral and non-viral transient expression for pre-clinical evaluation. Vaccines (Basel), 8, 654. 10.3390/vaccines8040654

Pino, P., Kint, J., Kiseljak, D., Agnolon, V., Corradin, G., Kajava, A. V., Rovero, P., Dijkman, R., den Hartog, G., McLellan, J. S., Byrne, P. O., Wurm, M. J & Wurm, F. M. (2020). Trimeric SARS-CoV-2 spike proteins produced from CHO cells in bioreactors are high-quality antigens. Processes, 8, 1539.



How to Cite

Spyrydonov В., & Melnychuk М. (2021). Coronavirus S antigen as a marker of effective vaccination. Reports of the National Academy of Sciences of Ukraine, (3), 96–103.