Scattered X-ray radiation algorithmic compensation procedure in the X-ray imaging as an alternative to hardware methods




X-ray image, scattered X-ray radiation, Monte-Carlo simulation, antiscatter grid, algorithmic com pensation, antiscatter gap


Scattered X-ray radiation compensation algorithm proposed by authors is tested and compared with the most effective hardware methods: air-gap variation, anti-scatter grids. With the help of a numerical simulation, the simplicity and efficiency of the air-gap manipulation technique are shown to be contrasted by the side effects of this method: dramatic scanner and detector size increment. Typical antiscatter grid with r = 12 attenua tes scattered radiation with an efficiency of 10 meter air gap requiring 50 % more exposition and dose. The algorithmic compensation proposed by the authors provides the compensation at the level of the average hardware method but does not require an extra dose.


Monnin, P., Verdun, F. R., Bosmans, H., Rodríguez Pérez, S. & Marshall, N. W. (2017). Comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation. Phys. Med. Biol., 62, No. 14, p. 5691-5722.

Mazurov, A. I. & Potrahov, N. N. (2012). Effect of scattered X-ray radiation on image quality and compensation method of these effects. Biotehnosfera, No. 3-4, pp. 10-14 (in Russian).

Mizuta, M., Sanada, S., Akazawa, H., Kasai, T., Abe, S., Ikeno, Y. & Mitou, S. (2012). Comparison of antiscatter grids for digital imaging with use of a direct-conversion flat-panel detector. Radiol. Phys. Technol., 5, No. 1, p. 46-52.

Gould, R. G. & Hale, J. (1974). Control of scattered radiation by air gap techniques: applications to chest radiography. Am. J. Roentgenol., 121, No. 1, p. 109-118.

Tsuji, Y., Araki, K., Endo, A., Funahashi, I. & Okano, T. (2006). Scatter radiation and the effects of air gaps in cephalometric radiography. Oral Radiol., 22, No. 1, pp. 7-13.

Danyk, A. Y. & Sudakov, O. О. (2020). Optimized estimation of scattered radiation for X-ray images improvement: realistic simulation. Radioelectron. Commun. Syst., 63, No. 8, p. 387-397. S0735272720080014

Danyk, A., Radchenko, S., Netreba, A. & Sudakov, O. (2019, September). Using clustering analysis for determination of scattering kernels in X-ray imaging. Proceedings of the 10th IEEE International Conference on Intelligent data acquisition and advanced computing systems: technology and applications (IDAACS), Vol. 1 (pp. 211-215), Metz.

Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K., Autret, D., Avner, S., Barbier, R., Bardiès, M., Bloomfield, P. M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., Chatziioannou, A. F., Choi, Y., Chung, Y. H., Comtat, C., Donnarieix, D., Ferrer, L., Glick, S. J., Groiselle, C. J., Guez, D., Honore, P. F., Kerhoas-Cavata, S., Kirov, A. S., Kohli, V., Koole, M., Krieguer, M., van der Laan, D. J., Lamare, F., Largeron, G., Lartizien, C., Lazaro, D., Maas, M. C., Maigne, L., Mayet, F., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F. R., Rey, M., Schaart, D. R., Schmidtlein, C. R., Simon, L., Song, T. Y., Vieira, J. M., Visvikis, D., Van de Walle, R., Wieërs, E. & Morel, C. (2004). GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol., 49, No. 19, p. 4543-4561.

Sudakov, O., Kononov, M., Sliusar, Ie. & Salnikov, A. (2013, September). User clients for working with medical images in Ukrainian Grid infrastructure. Proceedings of the 7th IEEE International Conference Intelligent data acquisition and advanced computing systems (IDAACS), Vol. 2 (pp. 705-710), Berlin. https://doi. org/10.1109/IDAACS.2013.6663016



How to Cite

Danyk А., & Sudakov О. (2021). Scattered X-ray radiation algorithmic compensation procedure in the X-ray imaging as an alternative to hardware methods. Reports of the National Academy of Sciences of Ukraine, (4), 114–122.