On the influence of ideals and self-idealizing subalgebras on the structure of Leibniz algebras

Authors

DOI:

https://doi.org/10.15407/dopovidi2021.05.012

Keywords:

Leibniz algebra, ideal, idealizer, self-idealizing subalgebra

Abstract

The subalgebra A of a Leibniz algebra L is self-idealizing in L, if A = IL (A) . In this paper we study the structure of Leibniz algebras, whose subalgebras are either ideals or self-idealizing. More precisely, we obtain a description of such Leibniz algebras for the cases where the locally nilpotent radical is Abelian non-cyclic, non-Abelian noncyclic, and cyclic of dimension 2.

References

Blokh, A. (1965). A generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR, 165, No. 3, pp. 471-473 (in Russian).

Loday, J.-L. (1992). Cyclic Homology. Grundlehren der mathematischen Wissenschaften, Vol. 301. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-21739-9

Loday, J.-L. (1993). Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math., 39, pp. 269-293. https://doi.org/10.5169/seals-60428

Loday, J.-L. & Pirashvili, T. (1993). Universal enveloping algebras of Leibniz algèbras and (co)homology. Math. Ann., 296, No. 1, pp. 139-158. https://doi.org/10.1007/BF01445099

Ayupov, S. A., Omirov, B. A. & Rakhimov, I. S. (2020). Leibniz algebras: structure and classification. Boca Raton: CRC Press, Taylor & Francis Group.

Chupordia, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). On some “minimal” Leibniz algebras. J. Algebra Appl., 16, No. 5, 1750082. https://doi.org/10.1142/S0219498817500827

Kurdachenko, L. A., Semko, N. N. & Subbotin, I. Ya. (2017). The Leibniz algebras whose subalgebras are ideals. Open Math., 15, pp. 92-100. https://doi.org/10.1515/math-2017-0010

Kurdachenko, L. A., Subbotin, I. Ya. & Yashchuk, V. S. (2018). Leibniz algebras whose subideals are ideals. J. Algebra Appl., 17, No. 8, 1850151. https://doi.org/10.1142/S0219498818501517

Kurdachenko, L. A., Subbotin, I. Ya. & Semko, N. N. (2018). From groups to Leibniz algebras: common approaches, parallel results. Adv. Group Theory Appl., 5, pp. 1-31. https://doi.org/10.4399/97888255161421

Kurdachenko, L. A., Otal, J. & Subbotin, I. Ya. (2019). On some properties of the upper central series in Leibniz algebras. Comment. Math. Univ. Carolin., 60, No. 2, pp. 161-175. https://doi.org/10.14712/1213-7243.2019.009

Kurdachenko, L. A., Subbotin, I. Ya. & Yashchuk, V. S. (2020). Some antipodes of ideals in Leibniz algebras. J. Algebra Appl., 19, No. 6, 2050113. https://doi.org/10.1142/S0219498820501133

Barnes, D. W. (2011). Some theorems on Leibniz algebras. Comm. Algebra, 39, No. 7, pp. 2463-2472. https://doi.org/10.1080/00927872.2010.489529

Kurdachenko, L. A., Otal, J. & Pypka, A. A. (2016). Relationships between factors of canonical central series of Leibniz algebras. Eur. J. Math., 2, pp. 565-577. https://doi.org/10.1007/s40879-016-0093-5

Downloads

Published

27.10.2021

How to Cite

Kurdachenko, L. ., Pypka, A., & Subbotin, I. (2021). On the influence of ideals and self-idealizing subalgebras on the structure of Leibniz algebras. Reports of the National Academy of Sciences of Ukraine, (5), 12–17. https://doi.org/10.15407/dopovidi2021.05.012