The description of the automorphism groups of finite-dimensional cyclic Leibniz algebras

Authors

DOI:

https://doi.org/10.15407/dopovidi2022.02.012

Keywords:

Leibniz algebra, automorphism group, module over an associative ring

Abstract

In the study of Leibniz algebras, the information about their automorphisms (as well as about endomorphisms, derivations, etc.) is very useful. We describe the automorphism groups of finite-dimensional cyclic Leibniz algebras. In particular, we consider the natural relationships between Leibniz algebras, groups and modules over associative rings.

Downloads

Download data is not yet available.

References

Blokh, A. (1965). A generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR, 165, No. 3, pp. 471-473 (in Russian).

Loday, J.-L. (1992). Cyclic homology. Grundlehren der mathematischen wissenschaften, Vol. 301. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-21739-9

Loday, J.-L. (1993). Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math., 39, pp. 269-293. https://doi.org/10.5169/seals-60428

Loday, J.-L. & Pirashvili, T. (1993). Universal enveloping algebras of Leibniz algebras and (co)homology.

Math. Ann., 296, No. 1, pp. 139-158. https://doi.org/10.1007/BF01445099

Ayupov, S. A., Omirov, B. A. & Rakhimov, I. S. (2020). Leibniz algebras: structure and classification. Boca Raton: CRC Press, Taylor & Francis Group.

Kirichenko, V. V., Kurdachenko, L. A., Pypka, A. A. & Subbotin, I. Ya. (2017). Some aspects of Leibniz algebra theory. Algebra Discrete Math., 24, No. 1, pp. 1-33.

Chupordia, V. A., Pypka, A. A., Semko, N. N. & Yashchuk, V. S. (2019). Leibniz algebras: a brief review of current results. Carpathian Math. Publ., 11, No. 2, pp. 250-257. https://doi.org/0.15330/cmp.11.2.250-257

Kurdachenko, L. A., Semko, N. N. & Subbotin, I. Ya. (2020). Applying group theory philosophy to Leibniz algebras: some new developments. Adv. Group Theory Appl., 9, pp. 71-121. https://doi.org/10.32037/agta-2020-004

Ayupov, Sh., Kudaybergenov, K., Omirov, B. & Zhao, K. (2020). Semisimple Leibniz algebras, their derivations and automorphisms. Linear Multilinear Algebra, 68, No. 10, pp. 2005-2019. https://doi.org/10.1080/03081087.2019.1567674

Ladra, M., Rikhsiboev, I. M. & Turdibaev, R.M. (2016). Automorphisms and derivations of Leibniz algebras. Ukrainian Math. J., 68, No. 7, pp. 1062-1076. https://doi.org/10.1007/s11253-016-1277-3

Kurdachenko, L. A., Subbotin, I. Ya. & Yashchuk, V. S. (2021). On the endomorphisms and derivations of some Leibniz algebras. arXiv:2104.05922.

Chupordia, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). On some ‘’minimal’’ Leibniz algebras.

J. Algebra Appl., 16, No. 5, 1750082. https://doi.org/10.1142/S0219498817500827

Kurdachenko, L. A., Otal, J. & Pypka, A. A. (2016). Relationships between factors of canonical central series of Leibniz algebras. Eur. J. Math., 2, pp. 565-577. https://doi.org/10.1007/s40879-016-0093-5

Downloads

Published

10.05.2022

How to Cite

Kurdachenko, L. ., Pypka, O. ., & Subbotin, I. . (2022). The description of the automorphism groups of finite-dimensional cyclic Leibniz algebras. Reports of the National Academy of Sciences of Ukraine, (2), 12–20. https://doi.org/10.15407/dopovidi2022.02.012