The description of the automorphism groups of finite-dimensional cyclic Leibniz algebras




Leibniz algebra, automorphism group, module over an associative ring


In the study of Leibniz algebras, the information about their automorphisms (as well as about endomorphisms, derivations, etc.) is very useful. We describe the automorphism groups of finite-dimensional cyclic Leibniz algebras. In particular, we consider the natural relationships between Leibniz algebras, groups and modules over associative rings.


Download data is not yet available.


Blokh, A. (1965). A generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR, 165, No. 3, pp. 471-473 (in Russian).

Loday, J.-L. (1992). Cyclic homology. Grundlehren der mathematischen wissenschaften, Vol. 301. Berlin, Heidelberg: Springer.

Loday, J.-L. (1993). Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math., 39, pp. 269-293.

Loday, J.-L. & Pirashvili, T. (1993). Universal enveloping algebras of Leibniz algebras and (co)homology.

Math. Ann., 296, No. 1, pp. 139-158.

Ayupov, S. A., Omirov, B. A. & Rakhimov, I. S. (2020). Leibniz algebras: structure and classification. Boca Raton: CRC Press, Taylor & Francis Group.

Kirichenko, V. V., Kurdachenko, L. A., Pypka, A. A. & Subbotin, I. Ya. (2017). Some aspects of Leibniz algebra theory. Algebra Discrete Math., 24, No. 1, pp. 1-33.

Chupordia, V. A., Pypka, A. A., Semko, N. N. & Yashchuk, V. S. (2019). Leibniz algebras: a brief review of current results. Carpathian Math. Publ., 11, No. 2, pp. 250-257.

Kurdachenko, L. A., Semko, N. N. & Subbotin, I. Ya. (2020). Applying group theory philosophy to Leibniz algebras: some new developments. Adv. Group Theory Appl., 9, pp. 71-121.

Ayupov, Sh., Kudaybergenov, K., Omirov, B. & Zhao, K. (2020). Semisimple Leibniz algebras, their derivations and automorphisms. Linear Multilinear Algebra, 68, No. 10, pp. 2005-2019.

Ladra, M., Rikhsiboev, I. M. & Turdibaev, R.M. (2016). Automorphisms and derivations of Leibniz algebras. Ukrainian Math. J., 68, No. 7, pp. 1062-1076.

Kurdachenko, L. A., Subbotin, I. Ya. & Yashchuk, V. S. (2021). On the endomorphisms and derivations of some Leibniz algebras. arXiv:2104.05922.

Chupordia, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). On some ‘’minimal’’ Leibniz algebras.

J. Algebra Appl., 16, No. 5, 1750082.

Kurdachenko, L. A., Otal, J. & Pypka, A. A. (2016). Relationships between factors of canonical central series of Leibniz algebras. Eur. J. Math., 2, pp. 565-577.




How to Cite

Kurdachenko, L. ., Pypka, O. ., & Subbotin, I. . (2022). The description of the automorphism groups of finite-dimensional cyclic Leibniz algebras. Reports of the National Academy of Sciences of Ukraine, (2), 12–20.