Numerical solution of the problem of propagation of electroelasticity waves in a solid piezoceramic cylinder
DOI:
https://doi.org/10.15407/dopovidi2022.02.032Keywords:
axisymmetric wave propagation, piezoelectric solid cylinder, numerical method, nonhomogeneous material, dispersion curvesAbstract
The study of the propagation of free axisymmetric waves in a solid piezoelectric cylinder with axial polarization
is carried out on the basis of linear elasticity theory and linear electromechanical coupling. The cylinder lateral
surface are free of loads and are covered by thin electrodes, to which the alternating potential is applied. The
governing system of differential equations in partial derivatives with variable coefficients is obtained. The threedimensional
problem of the theory of electroelasticity in partial derivatives (by presenting components of the
elasticity tensor, component of displacement vectors, electrical induction and electrostatic potential by traveling
waves in the axial direction) is reduced to the boundary value problems for the system of the ordinary differential
equations.The resulting problem is solved by a stable method of discrete orthogonalization with the method of
step-by-step search The proposed approach allows to investigate the nature of propagation of electric-elastic
traveling waves for the case of continuously nonhomogeneous material. The spectral characteristics and a
comparative analysis of traveling waves for homogeneous and nonhomogeneous materials of a solid piezoelectric
cylinder are presented.
Downloads
References
Grigorenko, A. Y., Loza, I. A. & Shul’ga, N. A. (1984). Propagation of nonaxisymmetric acoustoelectric waves in a hollow cylinder. Soviet. Appl. Mech., 20, No. 6, pp. 517-521. https: //doi. org/10. 1007/BF00890550
Grigorenko, A. Y. & Loza, I. A. (2017). Axisymmetric Acoustoelectric Waves in a Hollow Cylinder Made of a Continuously Inhomogeneous Piezoelectric Material. Int. Appl. Mech., 53, No. 4, pp. 374-380. https: //doi. org/10. 1007/s10778-017-0821-7
Grigorenko, A. Ya., Müller, W. H., Grigorenko, Ya. M. & Vlaikov, G. G. (2016). Recent developments in anisotro pic heterogeneous shell theory. General theory and applications of classical theory. Vol. I, Springer. Р. 116.
Grigorenko, A. Ya., Müller, W. H., Grigorenko, Ya. M. & Vlaikov, G. G. (2016). Recent Developments in Aniso tropic Heterogeneous Shell Theory. Applications of Refined and Three-dimensional Theory. Vol. IIA. Springer. Р. 42.
Grigorenko, A. Ya., Müller, W. H., Grigorenko, Ya. M. & Vlaikov, G. G. (2016). Recent Developments in Aniso tro pic Heterogeneous Shell Theory. Applications of Refined and Three-dimensional Theory. Vol. IIB. Springer. Р. 108.
Grigorenko, A. Ya., Müller, W. H. & Loza, I. A. (2021). Selected Problems in the Elastodynamics of Piezo ceramic Bodies. Springer. Р. 227.
Grigorenko, Ya. M., Grigorenko, A. Ya. & Rozhok, L. S. (2006). Solving the Stress Problem for Solid Cylinders with Different End Conditions. Int. Appl. Mech., 42, No. 6, pp. 629-635. https: //doi. org/10. 1007/ s10778-006-0130-z
Loza, I. A. (1984). Axisymmetric acoustoelectrical wave propagation in a hollow circularly polarized cylindri cal waveguide. Soviet. Appl. Mech., 20, No. 12, рр. 1103-1106. https: //doi. org/10. 1007/BF00888958
Loza, I. A. (1985). Propagation of nonaxisymmetric waves in hollow piezoceramic cylinder with radial polarization. Soviet. Appl. Mech., 21, No. 1, рр. 22-27. https: //doi. org/10. 1007/BF00887877
Loza, I. A., Medvedev, K. V. & Shul’ga, N. A. (1987). Propagation of nonaxisymmetric acoustoelectric waves in layered cylinders. Soviet. Appl. Mech., 23, No. 8, рр. 703-706. https: //doi. org/10. 1007/BF00886654
Mirsky, I. (1965). Wave propagation in transversely isotropic circular cylinders. Part 1: Theory. J. Acoust. Soc. Am., 37, No. 6, рр. 2106-2122. https: //doi. org/10. 1121/1. 1909508
Paul, H. S. (1966). Vibrations of Circular Cylindrical Shells of Piezoelectric Silver Iodide Crystals. J. Acoust. Soc. Am., 40, рр. 1077-1080. https: //doi. org/10. 1121/1. 1910191
Paul, H. S. (2010). Torsional vibration of a circular cylinder of piezoelectric β-quartz. Arch. Mech. Stosow.
P. 127. 14. Puzyrev, V. (2010). Elastic waves in piezoceramic cylinders of sector cross-section. Int. J. Solids Struct., 47, рр. 2115-2122. https: //doi. org/10. 1016/j. ijsolstr. 2010. 04. 011
Shatalov, M., Every, A. & Yenwong-Fai, A. (2009). Analysis of non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material. Int. J. Solids Struct., 46, рр. 837-850. https: //doi. org/10. 1016/j. ijsolstr. 2008. 09. 022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.