Synthesis and crystal structure of slab perovskites SrLa1–xGdxScO4




compounds of An 1BnO3n 1 type, slab perovskite-like structure, interblock distances, polyhedron deformation


The isovalent substitution conditions of lanthanum by gadolinium atoms in slab perovskite-like structure of SrLa1–xGdxScO4 (0 ≤ x ≤ 0. 8) scandates have defined. Orthorhombic (space group Abma) crystal structure of SrLa1–xGdxScO4 phases with the degree of lanthanum atoms substitution of 0. 2, 0. 4, 0. 6, and 0. 8 have determined using the Rietveld method. The main structural units of SrLa1–xGdxScO4 are two-dimensional perovskite-like blocks with a thickness of one slab of distorted ScO6 octahedra joined by vertices. Neighboring blocks are separated by the slab of (Sr, La, Gd)О9 polyhedra. There are no direct Sc—O—Sc bonds between the octahedra of adjacent blocks. Blocks are connected through —O—(Sr, La, Gd)—O— bonds. Analysis of the crystallochemical parameters of the synthesized phases has shown that, in the case of the isovalent substitution of lanthanum atoms by smaller gadolinium atoms in a slab structure of SrLa1–xGdxScO4, a gradual reduction of the length of (Sr, La, Gd)—О2 interblock bonds (from 0. 2378(7) nm at х = 0 up to 0. 230(1) nm at х = 0. 8) takes place. Reducing the distance between perovskite-like blocks brings the constitution of the two-dimensional slab perovskite-like structure SrLa1–xGdxScO4 closer to the structure of three-dimensional perovskite, which ultimately leads to its destruction at x > 0. 8 and gives the basis for the conclusion that this is the factor caused a limitation of area of SrLa1–xGdxScO4 (0 ≤ x ≤ 0. 8) solid solutions with slab perovskite-like structure and the absence of SrGdScO4 compound. The structural features of the slab structure of isovalently substituted samples of the SrLa1–xGdxScO4 and Sr1–xCaxLaScO4 systems are compared.


Download data is not yet available.


Alexandrov, K. C. & Beznosikov, B. V. (2004). Perovskites. Present and future. Novosibirsk: Izd-vo SO RAN (in Russian).

Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. https: //doi. org/10. 1021/cm010689m

Nirala, G., Yadav, D. & Upadhaya, S. (2020). Ruddlesden-Popper phase A2BO4 oxides: Recent studes on structure, electrical, dielectric and optical properties. J. Advanced Ceramics, 9, No 2, pp. 129-148. https: //doi. org/10. 1007/s40145-020-0365-x

Ding, P., Li, W., Zhao, H., Wu, C., Zhao, L., Dong, B. & Wang, S. (2021). Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells. J. Phys. Mater., 4, No. 2, 022002. https: //doi. org/10. 1088/2515-7639/abe392

Xiao, H., Liu, P., Wang, W., Ran, R., Zhou, W. & Shao, Z. (2020). Ruddlesden–Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. Energy Fuels, 34, No. 8, pp. 9208-9221. https: //doi. org/10. 1021/acs. energyfuels. 0c02301

Kim, I. -S., Nakamura, T. & Itoh, M. (1993). Humidity sensing effects of the layered oxides SrO·(LaScO3)n (n = 1, 2, ∞). J. Ceram. Soc. Jap., 101, No. 7. pp. 800-803. https: //doi. org/10. 2109/jcersj. 101. 800

Titov, Yu., Nedilko, S. G., Chornii, V., Scherbatskii, V., Belyavina, N., Markiv, V. & Polubinskii, V. (2015). Crystal structure and luminescence of layered perovskites Sr3LnInSnO8. Solid State Phenomena, 230, pp. 67-72. https: //doi. org/10. 4028/www. scientific. net/SSP. 230. 67

Kato, S., Ogasawara, M., Sugai, M. & Nakata, S. (2002). Synthesis and oxide ion conductivity of new layered perovskite La1–xSr1+xInO4–d. Solid state ionics, 149, No. 1-2, pp. 53-57. https: //doi. org/10. 1016/S0167-2738(02)00138-8

Svensson, G., Samain, L., Biendicho, J. J., Mahmoud, A., Hermann, R. P., Istomin, S. Ya. & Grins, J. (2018). Crystal structure and coordination of B-cations in the Ruddlesden–Popper phases Sr3–xPrx(Fe1. 25Ni0. 75)O7-δ (0 ≤ x ≤ 0. 4). Inorganics, 6, No. 3, pp. 89. https: //doi. org/10. 3390/inorganics6030089

Patel, R., Simon, C. & Weller, M. T. (2007). LnSrScO4 (Ln = La, Ce, Pr, Nd and Sm) systems and structure correlations for A2BO4 (K2NiF4) structure types. J. Solid State Chem., 180, pp. 349-359. https: //doi. org/10. 1016/j. jssc. 2006. 10. 023

Titov, Y. O., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S., Krayevska, Ya. A. & Yaschuk, V. P. (2009). Synthesis and crystal structure of SrEuScO4. Dopov. Nac. akad. nauk Ukr., No. 4, pp. 158-163 (in Ukrainian).

Titov, Y. O., Belyavina, N. M., Slobodyanik, M. S. & Chumak, V. V. (2019). Changes of the slab structure constitution of scandate SrLaScO4 at the isovalent substitution of strontium atoms. Dopov. Nac. akad. nauk Ukr., No. 7, pp. 59-65 (in Ukrainian). https: //doi. org/10. 15407/dopovidi2019. 07. 059

Dashevskyi, M., Boshko, O., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y—Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. https: // doi. org/10. 15407/mfint. 39. 04. 0541

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, No. 5, pp. 751-767. https: //doi. org/10. 1107/S0567739476001551



How to Cite

Titov Ю. ., Slobodyanik М. ., Strutynska Н. ., & Chumak В. . (2022). Synthesis and crystal structure of slab perovskites SrLa1–xGdxScO4. Reports of the National Academy of Sciences of Ukraine, (2), 75–82.