Bifurcation of maximal attractors in nonideal pendulum systems
DOI:
https://doi.org/10.15407/dopovidi2022.03.013Keywords:
динамічний хаос, сценарії переходу до хаосу, максимальний атракторAbstract
Scenarios of transition to chaos were studied for maximal attractors in dynamic systems of a type “spherical pendulum – electromotor with limited power”. It is established that transition to chaos for maximal attractors occurs according to classical scenarios in nonlinear dynamics, despite the fact that maximal attractors are not attractors in the traditional sense of the term.
Downloads
References
Feigenbaum, M. J. (1978). Quantative universality for a class of nonlinear transformations. J. Stat. Phys., 19, No. 1, pp. 25-52. https://doi.org/10.1007/BF01020332
https://doi.org/10.1007/BF01020332
Feigenbaum, M. J. (1979). The universal metric properties of nonlinear transformations. J. Stat. Phys., 21, No. 6, pp. 669-706. https://doi.org/10.1007/BF01107909
https://doi.org/10.1007/BF01107909
Manneville, P. & Pomeau, Y. (1980). Different ways to turbulence in dissipative dynamical systems. Phys. D.: Nonlinear Phenom., 1, No. 2, pp. 219-226. https://doi.org/10.1016/0167-2789(80)90013-5
https://doi.org/10.1016/0167-2789(80)90013-5
Pomeau, Y. & Manneville, P. (1980). Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74, No. 2, pp. 189-197. https://doi.org/10.1007/BF01197757
https://doi.org/10.1007/BF01197757
Kuznetsov, S. P. (2006). Dynamical chaos. Moscow: Fizmatlit (in Russian).
Krasnopolskaya, T. S. & Shvets, А. Yu. (1994). Chaotic surface waves in limited power-supply cylindrical tank vibrations. J. Fluids Struct., 8, No. 1, pp. 1-18. https://doi.org/10.1006/jfls.1994.1001
https://doi.org/10.1006/jfls.1994.1001
Krasnopolskaya, T. S. & Shvets, А. Yu. (2009). Dynamical chaos for a limited power supply for fluid oscillations in cylindrical tanks. J. Sound Vibr., 322, No. 3, pp. 532-553. ttps://doi.org/10.1016/j.jsv.2008.09.007
https://doi.org/10.1016/j.jsv.2008.09.007
Shvets, A. Yu. & Sirenko, V. A. (2019). Scenarios of transitions to hyperchaos in nonideal oscillating systems. J. Math. Sci., 243, No. 2, pp. 338-346. https://doi.org/10.1007/s10958-019-04543-z
https://doi.org/10.1007/s10958-019-04543-z
Shvets, A. (2020, June). Over view of scenarios of transition to chaos in nonideal dynamic systems. Proceedings of the 13th International Conference Chaotic modeling and simulation (CHAOS 2020) (pp. 853-864). Cham: Springer. https://doi.org/10.1007/978-3-030-70795-8_59
https://doi.org/10.1007/978-3-030-70795-8_59
Shvets, A. & Donetskyi, S. (2021). New types of limit sets in the dynamic system "Spherical Pendulum-Electric Motor". In Altenbach, H., Amabili, M. & Mikhlin Y. V. (Eds). Nonlinear mechanics of complex structures, Advanced structured materials (Vol. 157) (pp. 443-455). Cham: Springer. https://doi.org/10.1007/978-3-030-75890-5_25
https://doi.org/10.1007/978-3-030-75890-5_25
Milnor J. On the concept of attractor. Commun. Math. Phys. 1985. 99. P. 177-195. https://doi.org/10.1007/BF01212280
https://doi.org/10.1007/BF01212280
Anischenko, V. S. & Vadivasova, T. E. (2011). Lectures on nonlinear dynamics. Moscow, Izhevsk: Research Center "Regular and Chaotic Dynamics" (in Russian).
Kononenko, V. O. (1969). Vibrating system with a limited power-supply. London: Iliffe.
Krasnopolskaya, T. S, Shvets, A. Yu. (1992). Chaotic oscillations of a spherical pendulum as an example of interaction with energy source. Int. Appl. Mech., 28, pp. 669-674. https://doi.org/10.1007/BF00846923
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.