Bifurcation of maximal attractors in nonideal pendulum systems




динамічний хаос, сценарії переходу до хаосу, максимальний атрактор


Scenarios of transition to chaos were studied for maximal attractors in dynamic systems of a type “spherical pendulum – electromotor with limited power”. It is established that transition to chaos for maximal attractors occurs according to classical scenarios in nonlinear dynamics, despite the fact that maximal attractors are not attractors in the traditional sense of the term.


Download data is not yet available.


Feigenbaum, M. J. (1978). Quantative universality for a class of nonlinear transformations. J. Stat. Phys., 19, No. 1, pp. 25-52.

Feigenbaum, M. J. (1979). The universal metric properties of nonlinear transformations. J. Stat. Phys., 21, No. 6, pp. 669-706.

Manneville, P. & Pomeau, Y. (1980). Different ways to turbulence in dissipative dynamical systems. Phys. D.: Nonlinear Phenom., 1, No. 2, pp. 219-226.

Pomeau, Y. & Manneville, P. (1980). Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74, No. 2, pp. 189-197.

Kuznetsov, S. P. (2006). Dynamical chaos. Moscow: Fizmatlit (in Russian).

Krasnopolskaya, T. S. & Shvets, А. Yu. (1994). Chaotic surface waves in limited power-supply cylindrical tank vibrations. J. Fluids Struct., 8, No. 1, pp. 1-18.

Krasnopolskaya, T. S. & Shvets, А. Yu. (2009). Dynamical chaos for a limited power supply for fluid oscillations in cylindrical tanks. J. Sound Vibr., 322, No. 3, pp. 532-553. ttps://

Shvets, A. Yu. & Sirenko, V. A. (2019). Scenarios of transitions to hyperchaos in nonideal oscillating systems. J. Math. Sci., 243, No. 2, pp. 338-346.

Shvets, A. (2020, June). Over view of scenarios of transition to chaos in nonideal dynamic systems. Proceedings of the 13th International Conference Chaotic modeling and simulation (CHAOS 2020) (pp. 853-864). Cham: Springer.

Shvets, A. & Donetskyi, S. (2021). New types of limit sets in the dynamic system "Spherical Pendulum-Electric Motor". In Altenbach, H., Amabili, M. & Mikhlin Y. V. (Eds). Nonlinear mechanics of complex structures, Advanced structured materials (Vol. 157) (pp. 443-455). Cham: Springer.

Milnor J. On the concept of attractor. Commun. Math. Phys. 1985. 99. P. 177-195.

Anischenko, V. S. & Vadivasova, T. E. (2011). Lectures on nonlinear dynamics. Moscow, Izhevsk: Research Center "Regular and Chaotic Dynamics" (in Russian).

Kononenko, V. O. (1969). Vibrating system with a limited power-supply. London: Iliffe.

Krasnopolskaya, T. S, Shvets, A. Yu. (1992). Chaotic oscillations of a spherical pendulum as an example of interaction with energy source. Int. Appl. Mech., 28, pp. 669-674.



How to Cite

Donetskyi, C. ., & Shvets О. . (2022). Bifurcation of maximal attractors in nonideal pendulum systems. Reports of the National Academy of Sciences of Ukraine, (3), 13–19.