Bifurcation of maximal attractors in nonideal pendulum systems

Authors

DOI:

https://doi.org/10.15407/dopovidi2022.03.013

Keywords:

динамічний хаос, сценарії переходу до хаосу, максимальний атрактор

Abstract

Scenarios of transition to chaos were studied for maximal attractors in dynamic systems of a type “spherical pendulum – electromotor with limited power”. It is established that transition to chaos for maximal attractors occurs according to classical scenarios in nonlinear dynamics, despite the fact that maximal attractors are not attractors in the traditional sense of the term.

Downloads

Download data is not yet available.

References

Feigenbaum, M. J. (1978). Quantative universality for a class of nonlinear transformations. J. Stat. Phys., 19, No. 1, pp. 25-52. https://doi.org/10.1007/BF01020332

https://doi.org/10.1007/BF01020332

Feigenbaum, M. J. (1979). The universal metric properties of nonlinear transformations. J. Stat. Phys., 21, No. 6, pp. 669-706. https://doi.org/10.1007/BF01107909

https://doi.org/10.1007/BF01107909

Manneville, P. & Pomeau, Y. (1980). Different ways to turbulence in dissipative dynamical systems. Phys. D.: Nonlinear Phenom., 1, No. 2, pp. 219-226. https://doi.org/10.1016/0167-2789(80)90013-5

https://doi.org/10.1016/0167-2789(80)90013-5

Pomeau, Y. & Manneville, P. (1980). Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74, No. 2, pp. 189-197. https://doi.org/10.1007/BF01197757

https://doi.org/10.1007/BF01197757

Kuznetsov, S. P. (2006). Dynamical chaos. Moscow: Fizmatlit (in Russian).

Krasnopolskaya, T. S. & Shvets, А. Yu. (1994). Chaotic surface waves in limited power-supply cylindrical tank vibrations. J. Fluids Struct., 8, No. 1, pp. 1-18. https://doi.org/10.1006/jfls.1994.1001

https://doi.org/10.1006/jfls.1994.1001

Krasnopolskaya, T. S. & Shvets, А. Yu. (2009). Dynamical chaos for a limited power supply for fluid oscillations in cylindrical tanks. J. Sound Vibr., 322, No. 3, pp. 532-553. ttps://doi.org/10.1016/j.jsv.2008.09.007

https://doi.org/10.1016/j.jsv.2008.09.007

Shvets, A. Yu. & Sirenko, V. A. (2019). Scenarios of transitions to hyperchaos in nonideal oscillating systems. J. Math. Sci., 243, No. 2, pp. 338-346. https://doi.org/10.1007/s10958-019-04543-z

https://doi.org/10.1007/s10958-019-04543-z

Shvets, A. (2020, June). Over view of scenarios of transition to chaos in nonideal dynamic systems. Proceedings of the 13th International Conference Chaotic modeling and simulation (CHAOS 2020) (pp. 853-864). Cham: Springer. https://doi.org/10.1007/978-3-030-70795-8_59

https://doi.org/10.1007/978-3-030-70795-8_59

Shvets, A. & Donetskyi, S. (2021). New types of limit sets in the dynamic system "Spherical Pendulum-Electric Motor". In Altenbach, H., Amabili, M. & Mikhlin Y. V. (Eds). Nonlinear mechanics of complex structures, Advanced structured materials (Vol. 157) (pp. 443-455). Cham: Springer. https://doi.org/10.1007/978-3-030-75890-5_25

https://doi.org/10.1007/978-3-030-75890-5_25

Milnor J. On the concept of attractor. Commun. Math. Phys. 1985. 99. P. 177-195. https://doi.org/10.1007/BF01212280

https://doi.org/10.1007/BF01212280

Anischenko, V. S. & Vadivasova, T. E. (2011). Lectures on nonlinear dynamics. Moscow, Izhevsk: Research Center "Regular and Chaotic Dynamics" (in Russian).

Kononenko, V. O. (1969). Vibrating system with a limited power-supply. London: Iliffe.

Krasnopolskaya, T. S, Shvets, A. Yu. (1992). Chaotic oscillations of a spherical pendulum as an example of interaction with energy source. Int. Appl. Mech., 28, pp. 669-674. https://doi.org/10.1007/BF00846923

https://doi.org/10.1007/BF00846923

Published

02.07.2022

How to Cite

Donetskyi, S. ., & Shvets, A. . (2022). Bifurcation of maximal attractors in nonideal pendulum systems. Reports of the National Academy of Sciences of Ukraine, (3), 13–19. https://doi.org/10.15407/dopovidi2022.03.013