Сomposition and antioxidant properties of Deschampsia antarctica É. Desv. extracts from different locations of the Maritime Antarctic





Deschampsia antarctica É. Desv., plant extracts, polyphenolic compounds, antioxidant properties


The composition and antioxidant properties of extracts from Deschampsia antarctica É. Desv. plants collected at different northern islands of Maritime Antarctica were studied. The composition of the extracts was studied using high performance liquid chromatography and mass spectrometry with matrix-assisted laser desorption/ ionization; antioxidant properties were studied using Folin-Ciocalteu method and DPPH test. Polyphenolic compounds, in particular flavonoids, hydroxycinnamic and hydroxybenzoic acids, were found to be the main classes of substances present in the extracts. It has been confirmed that flavonoids are predominantly represented by luteolin glycosides; the composition and amount of phenolic compounds being dependent on the plant genotype, place of origin and environmental conditions. The total polyphenol content in the studied extracts was found to be in the range of 4. 33-10. 93 mg per 1 g of raw material. The highest concentration of active substances was typical for the extracts from plants of the Ukraine Island (the largest of Berthelot Islands), and the lowest one — from plants of the Darboux Island. The results of antioxidant studies have shown that the extracts have high antiradical activity and are able to inhibit more than 50 % of DPPH radicals in 60 min. The data on the composition of polyphenols in Deschampsia antarctica plants can further serve as a marker for monitoring the climate change.


Download data is not yet available.


Brunetti, C., Sebastiani, F. & Tattini, M. (2019). Review: ABA, flavonols, and the evolvability of land plants. Plant Sci., 280, pp. 448-454. https://doi.org/10.1016/j.plantsci.2018.12.010

Köhler, H., Contreras, R. A., Pizarro, M., Cortés-Antíquera, R. & Zúñiga, G. E. (2017). Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv. Front. Plant Sci., 8, Art. 921. https://doi.org/10.3389/fpls.2017.00921

Zamarrón, A., Morel, E., Lucena, S. R., Mataix, M., Pérez-Davó, A., Parrado, C. & González S. (2019). Extract of Deschampsia antarctica (EDA) prevents dermal cell damage induced by UV radiation and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Int. J. Mol. Sci., 20, No. 6, pp. 1356-1373. https://doi.org/10.3390/ijms20061356

Malvicini, M., Gutierrez-Moraga, A., Rodriguez, M. M., Gomez-Bustillo, S., Salazar, L., Sunkel, C., Nozal, L., Salgado, A., Hidalgo, M., Lopez-Casas, P. P., Novella, J. L., Vaquero, J. J., Alvarez-Builla, J., Mora, A., Gidekel, M. & Mazzolini, G. (2018). A tricin derivative from Deschampsia antarctica Desv. inhibits colorectal carcinoma growth and liver metastasis through the induction of a specific immune response. Mol. Cancer Ther., 17, No. 5, pp. 966-976. https://doi.org/10.1158/1535-7163.MCT-17-0193

Cortés-Antiquera, R., Pizarro, M., Contreras, R. A., Köhler, H. & Zúñiga, G. E. (2021). Heat shock tolerance in Deschampsia antarctica Desv. cultivated in vitro is mediated by enzymatic and non-enzymatic antioxidants. Front. Plant Sci., 12, 635491. https://doi.org/10.3389/fpls.2021.635491

Parnikoza, I., Kozeretska, I. & Kunakh, V. (2011). Vascular plants of the Maritime Antarctic: origin and adaptation. Am. J. Plant Sci., 2, No. 3, pp. 381-395. https://doi.org/10.4236/ajps.2011.23044

Lee, J., Noh, E. K., Choi, H. S., Shin, S. C., Park, H. & Lee, H. (2012). Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta, 237, pp. 823-836. https://doi.org/10.1007/s00425-012-1797-5

Webby, R. F. & Markham, K. R. (1994). Isoswertiajaponin 2''-O-β-arabinopyranoside and other flavone-Cglycosides from the Antarctic grass Deschampsia antarctica. Phytochemistry, 36, No. 5, pp. 1323-1326. https://doi.org/10.1016/S0031-9422(00)89660-0

Cavieres, L. A., Sáez, P., Sanhueza, C., Sierra-Almeida, A., Rabert, C., Corcuera, L. J., Alberdi, M. & Bravo, L. A. (2016). Ecophysiological traits of Antarctic vascular plants: the importance in the responses to climate change. Plant Ecol., 217, pp. 343-358. https://doi.org/10.1007/s11258-016-0585-x

Hillenkamp, F. & Peter-Katalinic, J. (Eds. ). (2007). MALDI MS: A practical guide to instrumentation, methods and applications. Weinheim: Wiley.

Alonso, A. M., Domianguez, C., Guillén, D. & Barroso, C. G. (2002). Determination of antioxidant power of red and white wines by a new electrochemical method and its correlation with polyphenolic content. J. Agric. Food Chem., 50, No. 11, pp. 3112-3115. https://doi.org/10.1021/jf0116101

Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT., 28, No. 1, pp. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Poronnik, O. O., Parnikoza, I. Yu., Miryuta, N. Yu., Myryuta, G. Yu., Grahov, V. P., Navrotska, D. O. & Kunakh, V. A. (2017). Deschampsia antarctica E. Desv. plants with different chromosome number cultivated in vitro. Plants length and flavonoids in in vitro culture and in nature. Factors of Experimental Evolution of Organisms, 20, pp. 310-313 (in Ukrainian). https://doi.org/10.7124/FEEO.v20.785

Amosova, A. V., Bolsheva, N. L., Samatadze, T. E., Twardovska, M. O., Zoshchuk, S. A., Andreev, I. O., Badaeva, E. D., Kunakh, V. A. & Muravenko, O. V. (2015). Molecular cytogenetic analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLoS One, 10, No. 9, e0138878. https://doi.org/10.1371/journal.pone.0138878

Suzuki, T., Midonoya, H. & Shioi, Yu. (2009). Analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry. Anal. Biochem., 390, No. 1, pp. 57-62. https://doi.org/10.1016/j.ab.2009.04.005



How to Cite

Laguta І. ., Stavinskaya О. ., Kuzema П. ., Anishchenko В. ., Ivannikov Р. ., Parnikoza І. ., Poronnik О. ., Myryuta Г. ., & Kunakh В. . (2022). Сomposition and antioxidant properties of Deschampsia antarctica É. Desv. extracts from different locations of the Maritime Antarctic. Reports of the National Academy of Sciences of Ukraine, (5), 68–78. https://doi.org/10.15407/dopovidi2022.05.068