Solid phase interaction of TiC with ZrC or ZrN under mechanochemical synthesis and HPHT powder

Authors

DOI:

https://doi.org/10.15407/dopovidi2022.06.054

Keywords:

mechanochemical synthesis, high pressures, titanium carbide, X-ray diffractometry, crystal structure

Abstract

Using the X-ray diffraction method, the crystal structure of titanium carbide (TiC) was studied in detail in products mechanochemical synthesized 80 ml. % TiC and 20 mol. % ZrC charge and composites obtained by HPHT sintering (7.7 GPa, 1750—2300 °C) of 60 vol. % cBN, 25 vol. % TiC, 10 vol. % ZrC and 5 vol. % Al. It was found that solid-phase interaction of TiC with ZrC or ZrN (molar ratio of TiC to ZrC or ZrN about 3 : 1) solid solutions containing up to 11 at. % zirconium were formed. Specifically, metal atoms defective solid solution (Ti, Zr)1—δC was formed after 3 hours charge mechanochemical treatment in a high-energy planetary mill, and nitrogen-saturated solid solution (Ti, Zr) (C, N)1+δ was formed under HPHT sintering conditions above 1900 °С.

Downloads

Download data is not yet available.

References

ISO 513: 2004 Classification and application of hard cutting materials for metal removal with defined cutting edges — Designation of the main groups of application. Geneva: International Oraganization for Standardization, 2004.

McKie, A., Winzer, J., Sigalas, I., Herrmann, M., Weiler, L., Rödel, J. & Can, N. (2011). Mechanical properties of cBN-Al composite materials. Ceram. Int., 37, No. 1, pp. 1-8. https://doi.org/10.1016/j.ceramint.2010.07.034

Bushlya, V., Gutnichenko, O., Zhou, J., Avdovic, P. & Stahl, J. -E. (2013). Effects of cutting speed when turning age hardened Inconel 718 with PCBN tools of binderless and low-CBN grades. Mach. Sci. Technol., 17, No. 4, pp. 497-523. https://doi.org/10.1080/10910344.2013.806105

Klimczyk, P., Benko, E., Lawniczak-Jablonska, K., Piskorska, E., Heinonen, M., Ormaniec, A., Gorczynska— Zawislan, W. & Urbanovich, V. S. (2004). Cubic boron nitride — Ti/TiN composites: Hardness and phase equilibrium as function of temperature. J. Alloys Compd., 382, No. 1-2, pp. 195-205. https://doi.org/10.1016/j.jallcom.200404.140

Xie, H., Deng, F., Wang, H., Liu, J., Han, S. & Feng, F. (2020). Study of the proportioning design method and mechanical properties of a cBN—TiN composite. Int. J. Refract. Met. Hard Mater., 89, 105209. https://doi.org/10.1016/j.ijrmhm.2020.105209

Slipchenko, K. V., Stratiichuk, D. A., Turkevich, V. Z., Bilyavyna, N. M., Bushlya, V. M. & Ståhl, J. -E. (2020). Sintering of BN based composites with ZrC and Al under high temperatures and pressures. J. Superhard Mater., 42, No. 4, pp. 229-234. https://doi.org/10.3103/S1063457620040103

Bezhenar, M. P., Oleinik, G. S., Bozhko, S. A., Garbuz, T. O. & Konoval, S. M. (2009). Structure of composites of the cBN-Al-ZrN system produced by high-pressure sintering. J. Superhard Mater., 31, No. 6, pp. 357-362. https://doi.org/10.3103/S106345760906001X

Slipchenko, K., Bushlya, V., Stratiichuk, D., Petrusha, I., Can, A., Turkevich, V., Ståhl J. -E. & Lenrick, F. (2022). Multicomponent binders for PcBN performance enhancement in cutting tool applications. J. Eur. Ceram. Soc., 42, No. 11, pp. 4513-4527. https://doi.org/10.1016/j.jeurceramsoc.2022.04.022

Adjaoud, O., Steinle-Neumann, G., Burton, B. P. & Van de Walle, A. (2009). First-principles phase diagram calculations for the HfC—TiC, ZrC—TiC, and HfC—ZrC solid solutions. Phys. Rev. B., 80, No. 13, 134112. https://doi.org/10.1103/PhysRevB.80.134112

Li, Y., Katsui, H. & Goto, T. (2015). Spark plasma sintering of TiC—ZrC composites. Ceram. Int., 41, No. 5, pp. 7103-7108. https://doi.org/10.1016/j.ceramint.2015.02.019

Nakonechna, O. I., Belyavina, N. N., Dashevskyi, M. M., Ivanenko, K. O. & Revo, S. L. (2018). Novel Ti2CuCx and Ti3Cu2Cx carbides obtained by sintering of products of mechanochemical synthesis of Ti, Cu and carbon nanotubes. Phys. Chem. Solid State., 19, No. 2, pp. 179-185. https://doi.org/10.15330/pcss.19.2.179-185

Kovalev, D. Yu., Kochetov, N. A. & Chuev, I. I. (2021). Fabrication of high-entropy carbide (TiZrHfTaNb) С by high-energy ball milling. Ceram. Int., 47, No. 23, pp. 32626-32633. https://doi.org/10.1016/j.ceramint.2021.08.158

Avramenko, T. G., Kuryliuk, A. M., Nakonechna, O. I. & Belyavina, N. N. (2022). Effect of TEG on oxidation of TiC—ZrC equimolar blend at mechanical alloying. Metallofiz. Noveishie Tekhnol., 44, No. 6, pp. 713-724. https://doi.org/10.15407/mfint.44.06.0713

Dashevskyi, M., Boshko, О., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y-Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. https://doi.org/10.15407/mfint.39.04.0541

Belyavina, N. N., Stratiichuk, D. A., Nakonechna, О. І., Avramenko, T. G., Kuryliuk, A. M. & Turkevich, V. Z. (2022). Tin crystal structure features in cBN—TiN—Al composite sintered at high pressures and temperatures. Dopov. Nac. akad. nauk Ukr., No. 2, pp. 58-66. https://doi.org/10.15407/dopovidi2022.02.058

Published

21.12.2022

How to Cite

Belyavina Н. ., Turkevich В. ., Kuryliuk А. ., Stratiichuk Д. ., Nakonechna О. ., Avramenko Т. ., & Kogutyuk П. . (2022). Solid phase interaction of TiC with ZrC or ZrN under mechanochemical synthesis and HPHT powder. Reports of the National Academy of Sciences of Ukraine, (6), 54–63. https://doi.org/10.15407/dopovidi2022.06.054