Bernstein-type characterization of entire functions




Bernstein theorem, entire function, polynomial approximation, Shauder basis, transfinite diameter


Let ε be the set of all entire functions on the complex plane C. Let us consider the class XE of all complex Banach spaces X such that X ⊇ ε . For (X, ⎥⎥ ⋅ ⎥⎥)∈XE and g ∈X we write En, X (g ) = inf {⎥⎥ g − p⎥⎥: p∈Πn }, where Πn is the set of all polynomials with degree at most n. We describe all X ∈XE for which the relation lim n→∞ (En, X( g ))1/n = 0 holds if and only if g ∈ ε.


Download data is not yet available.


Bernstein, S. N. (1926). Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle. Paris: Gauthier-Villars.

Walsh, J. L. (1926). Über den Grad der Approximation einer analyti schen Funktion. In Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München (heft 2) (pp. 223-229). München: Oldenbourg Wissenschaftsverlag.

Walsh, J. L. & Russell, H. G. (1934). On the convergence and overcon vergence of sequences of polynomials of best simultaneous approximation to several functions analytic in distinct regions. Trans. Amer. Math. Soc., 36, pp. 13-28.

Varga, R. S. (1968). On an extension of a result of S. N. Bernstein. J. Approx. Theory, 1, pp. 176-179.

Kadets, M. I. & Kadets, V. M. (1997). Series in Banach spaces: condit ional and unconditional convergence. Basel, Boston, Berlin: Birkhäuser.

Fekete, M. (1923). Über die Verteilung der Wurzeln bei gewissen algebr aischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z., 17, pp. 228-249.

Fekete, M. (1930). Über den transfiniten Durchmesser ebener Punktmengen , II. Math. Z., 32, pp. 215-221.

Goluzin, G. M. (1969). Geometric theory of functions of a complex variab le. Providence: American Ma thematical Society.

Batyrev, A. V. (1951). On the problem of best approximation of an analyt ic function by polynomials. Dokl. Akad. Nauk SSSR, 26, pp. 173-175 (in Russian).

Winiarski, T. (1970). Approximation and interpolation of entire function s. Ann. Pol. Math., 23, pp. 259-273.

Dovgoshey, A. A. (1995). Uniform polynomial approximation of entire func tions on arbitrary compact sets in the complex plane. Math. Notes, 58, No. 3, pp. 921-927.

Walsh, J. L. (1946). Taylor’s series and approximation to analytic funct ions. Bull. Amer. Math. Soc., 52, pp. 572—579.

Myrberg, P. J. (1933). Über die Existenz der Greenschen Funktionen auf e nier Gegebenen Riemannschen Fläche. Acta Math., 61, pp. 39-79.

Naftalevich, A. G. (1969). On the approximation of analytic functions by a lgebraic polynomials. Litovsk. Matem. Sb., 9, No. 3, pp. 577-588 (in Russian). 15. Enflo, P. (1973). A counterexample to the approximation problem in Banach spaces. Acta Math., 130, No. 1, pp. 309-317.




How to Cite

Dovgoshey, O. ., Prestin, J. ., & Shevchuk, I. . (2023). Bernstein-type characterization of entire functions. Reports of the National Academy of Sciences of Ukraine, (1), 10–15.