Impact of steric factors on enzymatic resolution of 2,3-dihydro-1H-indenols taking into account the Koshland effect

Authors

DOI:

https://doi.org/10.15407/dopovidi2023.01.064

Keywords:

2,3-dihydro-1H-indendiols, silylated dihydroindenediols, enzymatic resolution, Burkholderia cepacia lipase, Koshland model.

Abstract

Enantiomerically pure 2,3-dihydro-1H-indendiols containing a hydroxyl group in the aromatic ring were obtained in high yields by enzymatic kinetic resolution of the corresponding racemates. Optimization of the process of deracemization was achieved by selecting biocatalysts, acylating reagents, solvents, and temperature, as well as the introduction of sterically bulky silyl substituents into the aromatic ring. The introduction of bulky tert-butyldimethylsilyl groups into the aromatic ring leads to an increase in the efficiency of deracemization and an increase in the ee of reaction products. For kinetic separation, both enzymatic transesterification and enzymatic hydrolysis of the corresponding acetates were used. As a result, dihydroindenediols with (S)- and (R)-absolute configurations of high enantiomeric purity were obtained. After the process of kinetic resolution, the enantiomeric purity of the products attained 99 % ee.

Downloads

Download data is not yet available.

References

Shankar, S. S., Dubé, M. P., Gorski, J. C., Klaunig, J. E. & Steinberg, H. O. (2005). Indinavir impairs endothelial function in healthy HIV-negative men. Am. Heart J., 150, pp. 933. https://doi.org/10.1016/j.ahj.2005.06.005

Liu, F., Boross, P. I., Wang, Y. F., Tozser, J., Louis, J. M., Harrison, R. W. & Weber, I. T. (2005). Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S. J. Mol. Biol., 354, pp. 789-800. https://doi.org/10.1016/j.jmb.2005.09.095

Eira, M., Araujo, M. & Seguro, A. C. (2006). Urinary NO3 excretion and renal failure in indinavir-treated patients. Braz. J. Med. Biol. Res., 39, pp. 1065-1070. https://doi.org/10.1590/S0100-879X2006000800009

Igarashi, Y., Otsutomo, S., Harada, M. & Nakano, S. (1997). Enzymatic resolution of indene bromohydrin acetate using immobilized lipase. Tetrahedron: Asymmetry, 8, No. 16, pp. 2833-2837. https://doi.org/10.1016/S0957-4166(97)00351-0

Luo, Z., Qin, F., Yan, S. & Li, X. (2012). An efficient and promising method to prepare Ladostigil (TV3326) via asymmetric transfer hydrogenation catalyzed by Ru—Cs-DPEN in an HCOONa—H2O—surfactant system. Tetrahedron: Asymmetry, 23, pp. 333-338. https://doi.org/10.1016/j.tetasy.2012.02.022

Weinstock, M., Luques, L., Bejar, C. & Shoham, S. (2006). Ladostigil, a novel multifunctional drug for the treatment of dementia co-morbid with depression. J. Neural Transm., 70, pp. 443-446. https://doi.org/10.1007/978-3-211-45295-0_67

Yoshimatsu, S., Yamada, A. & Nakata, K. (2018). Silylative kinetic resolution of racemic 1-indanol derivatives catalyzed by chiral guanidine. J. Org. Chem., 83, pp. 452—458. https://doi.org/10.1021/acs.joc.7b02493

Murase, K., Nligata, K., Mase, T. & Murakami, M. (1972). Synthesis of new indent derivatives with adrenergic blocking properties. Yakugaku Zasshi, 92, Iss. 11, pp. 1358-1363. https://doi.org/10.1248/yakushi1947.92.11_1358

Pat. 2006/0199974 A1 US, IPC C07C 271/40, Process for the synthesis of enantiomeric indanylamine derivatives, Boulton L. T., Lennon I. C. & Bahar, E., Publ. 07.09.2006.

Kisic, A., Stephan, M. & Mohar, B. (2015). ansa-Ruthenium(II) complexes of R2NSO2DPEN-(CH2)n(6-aryl) conjugate ligands for asymmetric transfer hydrogenation of aryl ketones. Adv. Synth. Catal., 357, pp. 2540- 2546. https://doi.org/10.1002/adsc.201500288

Pat. 6645961 Bl US. IPC A61K 31/495, A61K 31/47, A61K 31/535, Dry granulation formulation for an HIV protease inhibitor, Lui, C. Y., Ostovic, D., Katdare, A. V. & Stelmach, C., Publ. 11.11.2003.

Pat. WO 2012/101011, IPC C07C 237/24, C07D 257/00, C07D 311/00, C07D 333/00, C07D 271/00, C07D 305/00, A61P 13/12,A61K 31/165, A61K 31/4245, A61K 31/41, New aryl-benzocycloalkyl amide derivative, Aebi, J., Binggeli, A., Hertel, C, Konkar, A. A., Kuehne, H., Kuhn, B., Maerki, H. P. & Wang, H., Publ. 02.08.2012.

Bowers, N. I., Boyd, D. R., Sharma, N. D., Goodrich, P. A., Groocock, M. R., Blacker, A. J., Goode P. & Dalton, H. (1999). Stereoselective benzylic hydroxylation of 2-substituted indanes using toluene dioxygenase as biocatalyst. J. Chem. Soc. Perkin Trans. 1, Iss. 11, pp. 1453-1461. https://doi.org/10.1039/A901453E

Pat. 118619 Ukraine. IPC C07C 27/08, C07C 27/22, Method of producing stereoisomers of dihydro-1-indoles of formula 1 using kinetic separation of racemates in the presence of Burkholderia cepacia lipase or Candida Antarctica lipase B enzymes, Kolodiazhnyi, O. I., Kolodiazhna, A. O. & Kolodiazhna, O. O., Publ. 11.02.2019.

Ou-yang, J., Zhang, W., Qin, F., Zuo, W., Xu, S., Wang, Y., Qin, B., You, S. & Jia, X. (2017). Enantioselective bioreduction of benzo-fused cyclic ketones with engineered Candida glabrata ketoreductase 1 — a promising synthetic route to ladostigil (TV3326). Org. Biomol. Chem., 15, pp. 7374–7379. https://doi.org/10.1039/C7OB01803G

Published

09.03.2023

How to Cite

Prysiazhnuk, D. ., Kolodiazhna, A. ., & Kolodiazhnyi, O. . (2023). Impact of steric factors on enzymatic resolution of 2,3-dihydro-1H-indenols taking into account the Koshland effect. Reports of the National Academy of Sciences of Ukraine, (1), 64–73. https://doi.org/10.15407/dopovidi2023.01.064