Hydrodynamic normalization conditions in the theory of degenerate Beltrami equations
DOI:
https://doi.org/10.15407/dopovidi2023.02.010Keywords:
BMO, bounded mean oscillation, FMO, finite mean oscillation, degenerate Beltrami equations, hydrodynamic normalizationAbstract
We study the existence of normalized homeomorphic solutions for the degenerate Beltrami equation fz = μ(z )f in the whole complex plane C , assuming that its measurable coefficient μ(z ), | μ(z ) |<1 a. e., has compact support and the degeneration of the equation is controlled by the tangential dilatation quotient KT μ (z , z0) . We show that if KT μ (z , z0) has bounded or finite mean oscillation dominants, or satisfies the Lehto type integral divergence condition, then the Beltrami equation admits a regular homeomorphic W1,1loc solution f with the hydrodynamic normalization at infinity. We also give integral criteria of Calderon-Zygmund or Orlicz types for the existence of the normalized solutions in terms of KT μ (z , z0) and the maximal dilatation Kμ (z ) .
Downloads
References
Bers, L. (1958). Mathematical aspects of subsonic and transonic gas dynamics. Surveys in Applied Mathe- matics. (Vol. 3). New York: Wiley.
Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal map- pings in the plane. Princeton Mathematical Series, (Vol. 48). Princeton, NJ: Princeton University Press.
Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane. Tracts in Mathematics. (Vol. 19). Zürich: European Mathematical Society (EMS).
Gutlyanskii, V., Martio, O., Sugawa, T. & Vuorinen, M. (2005). On the degenerate Beltrami equation. Trans. Am. Math. Soc., 357, No. 3, pp. 875-900.
Ryazanov, V., Srebro, U. & Yakubov, E. (2001). BMO-quasiconformal mappings. J. Anal. Math., 83, pp. 1-20. https://doi.org/10.1007/BF02790254
Ryazanov, V., Srebro, U. & Yakubov, E. (2006). On the theory of the Beltrami equation. Ukr. Math. J., 58, No. 11, pp. 1786-1798. https://doi.org/10.1007/s11253-006-0168-4
Ryazanov, V., Srebro, U. & Yakubov, E. (2012). Integral conditions in the theory of the Beltrami equations. Complex Var. Elliptic Equ., 57, No. 12, pp. 1247-1270. https://doi.org/10.1080/17476933.2010.534790
Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A geometric approach. Developments in Mathematics, (Vol. 26). New York: Springer
Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in modern mapping theory. Springer Monographs in Mathematics. New York: Springer.
Fischer, W. & Lieb, I. (2012). A course in complex analysis. From basic results to advanced topics. Wies- baden: Vieweg + Teubner.
Spanier, E. H. (1995). Algebraic topology. Berlin: Springer.
Tutschke, W. & Vasudeva, H. L. (2005). An introduction to complex analysis. Classical and modern ap- proaches. Modern Analysis Series. (Vol. 7). Boca Raton, FL: Chapman & Hall/CRC.
John, F. & Nirenberg, L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14, pp. 415-426. https://doi.org/10.1002/cpa.3160140317
Reimann, H. M. & Rychener, T. (1975). Funktionen beschränkter mittlerer oszillation. Lecture Notes in Mathematics. (Bd. 487). Berlin, Heidelberg: Springer.
Ignat’ev, A. & Ryazanov, V. (2005). Finite mean oscillation in the mapping theory. Ukr. Math. Bull., 2, No. 3, pp. 403-424.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.