ПРО ПОХІДНІ АЛГЕБР ЛЕЙБНІЦА МАЛОЇ ВИМІРНОСТІ
DOI:
https://doi.org/10.15407/dopovidi2023.02.018Ключові слова:
вимірність, похідна, гіперцентр, алгебра Лейбніца, нільпотентна алгебра ЛейбніцаАнотація
Нехай L — це алгебра над полем F. Тоді L називається лівою алгеброю Лейбніца, якщо її операції множення [×, ×] задовольняють так звану ліву тотожність Лейбніца: [[a, b], c] = [a, [b, c]] – [b, [a, c]] для всіх елементів a, b, c Î L. У статті започатковано опис алгебри похідних алгебр Лейбніца, що мають вимірність 3. Зрозуміло, що опис алгебри похідних всіх алгебр Лейбніца вимірності 3 є досить великим. Тому тут наведено опис нільпотентних алгебр Лейбніца, клас нільпотентності яких дорівнює 3, та нільпотентних алгебр Лейбніца, центр яких має розмірність 2.
Завантаження
Посилання
Blokh, A. M. (1965). A generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR, 165, No. 3, pp. 471-473 (in Russian).
Loday, J.-L. (1998). Cyclic homology. Grundlehren der mathematischen Wissenschaften (Vol. 301). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-11389-9
Loday, J.-L. (1993). Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math., 39, pp. 269-293.
Loday, J.-L. & Pirashvili, T. (1993). Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann., 296, No. 1, pp. 139-158. https://doi.org/10.1007/BF01445099
Ayupov, Sh., Omirov, B. & Rakhimov, I. (2020). Leibniz algebras: Structure and classification. Boca Raton, London, New York: CRC Press, Taylor & Francis Group.
Kurdachenko, L. A., Otal, J. & Pypka, A. A. (2016). Relationships between factors of canonical central series of Leibniz algebras. Eur. J. Math., 2, No. 2, pp. 565-577. https://doi.org/10.1007/s40879-016-0093-5
Kurdachenko, L. A., Subbotin, I. Ya. & Yashchuk, V. S. (2022). On the endomorphisms and derivations of some Leibniz algebras. J. Algebra Its Appl. https://doi.org/10.1142/S0219498824500026
Semko, M. M., Skaskiv, L. V. & Yarovaya, O. A. (2022). On the derivations of cyclic Leibniz algebras. Car- pathian Math. Publ., 14, No. 2, pp. 345-353. https://doi.org/10.15330/cmp.14.2.345-353
Kurdachenko, L. A., Semko, N. N. & Yashchuk, V. S. (2021). On the structure of the algebra of derivations of cyclic Leibniz algebras. Algebra Discret. Math., 32, No. 2, pp. 241-252. https://doi.org/10.12958/adm1898
Casas, J. M., Insua, M. A., Ladra, M. & Ladra, S. (2012). An algorithm for the classification of 3-dimensional complex Leibniz algebras. Linear Algebra Appl., 436, No. 9, pp. 3747-3756. https://doi.org/10.1016/j.laa.2011.11.039
Demir, I., Misra, K. C. & Stitzinger, E. (2014). On some structures of Leibniz algebras. In Recent advances in representation theory, quantum groups, algebraic geometry, and related topics. Contemporary Mathematics (Vol. 623) (pp. 41-54). Providence: American Mathematical Society. https://doi.org/10.1090/conm/623/12456
Khudoyberdiyev, A. Kh., Kurbanbaev, T. K. & Omirov, B. A. (2010). Classification of three-dimensional solv- able p-adic Leibniz algebras. p-Adic Num. Ultrametr. Anal. Appl., 2, No. 3, pp. 207-221. https://doi.org/10.1134/S2070046610030039
Rakhimov, I. S., Rikhsiboev, I. M. & Mohammed, M. A. (2018). An algorithm for a classification of three-di- mensional Leibniz algebras over arbitrary fields. JP J. Algebra, Number Theory Appl., 40, No. 2, pp. 181-198. https://doi.org/10.17654/NT040020181
Yashchuk, V. S. (2019). On some Leibniz algebras, having small dimension. Algebra Discret. Math., 27, No. 2, pp. 292-308.
Cuvier, C. (1994). Algèbres de Leibnitz: définitions, propriétés. Ann. Scient. Éc. Norm. Sup., 4e série, 27, pp. 1-45. https://doi.org/10.24033/asens.1687
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Доповіді Національної академії наук України
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.