molecular markers, ТВР (Tubulin-Based Polymorphism), SSR (Simple Sequence Repeats), little-pod false flax (Camelina microcarpa), genetic diversity


The molecular genetic diversity of Ukrainian little-pod false flax (Camelina microcarpa Andrz. ex DC.) was assessed using two methods: tubulin-based polymorphism (TBP), which is based on length polymorphism of the first intron of β-tubulin genes, and microsatellite sequences (SSR — simple sequence repeats). The study was aimed to investigate the genetic diversity among the analyzed little-pod false flax accessions and determine the comparative effectiveness of the employed molecular methods. Furthermore, the suitability of prioritizing the TBP method for the analysis of herbarium specimens, considering the limited plant material and potential DNA damage caused by long-term storage, was demonstrated.


Download data is not yet available.


Blume, R. Y., Rakhmetov, D. B. & Blume, Y. B. (2022). Evaluation of Ukrainian Camelina sativa germplasm productivity and analysis of its amenability for efficient biodiesel production. Ind. Crops Prod., 187B, 115477. https://doi.org/10.1016/j.indcrop.2022.115477

Obour, A.K., Sintim, H.Y., Obeng, E. & Jeliazkov (Zheljazkov), D. V. (2015). Oilseed camelina (Camelina sativa

L. Crantz): production systems, prospects and challenges in the USA Great Plains. Adv. Plants Agric. Res., 2, No. 2, 00043. https://doi.org/10.15406/apar.2015.02.00043

Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon’kova, N. & Francis, C. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome, 53, pp. 558-567. https://doi.org/10.1139/G10-034

Galasso, I., Manca, A., Braglia, L., Ponzoni, E. & Breviario, D. (2015). Genomic fingerprinting of Camelina species using cTBP as molecular marker. Am. J. Plant Sci., 6, pp. 1184-1200. https://doi.org/10.4236/ajps.2015.68122

Manca, A., Pecchia, P., Mapelli, S., Masella, P. & Galasso, I. (2012). Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits. Genet. Resour. Crop Evol., 60, pp. 1223-1226. https://doi.org/10.1007/s10722-012-9913-8

Luo, Z., Brock, J., Dyer, J. M., Kutchan, T., Schachtman, D., Augustin, M., Ge, Y., Fahlgren, N. & Abdel-Haleem,

H. (2019). Genetic diversity and population structure of a Camelina sativa spring panel. Front. Plant Sci., 10, 184. https://doi.org/10.3389/fpls.2019.00184

Chaudhary, R., Koh, C. S., Kagale, S., Tang, L., Wu, S. W., Lv, Z., Mason, A. S., Sharpe, A. G., Diederichsen, A.,

& Parkin, I.A.P. (2020). Assessing diversity in the Camelina genus provides insights into the genome structure of Camelinasativa. G3: Genes, Genomes, Genet., 10, No. 4, pp. 1297-1308. https://doi.org/10.1534/g3.119.400957

Brock, J. R., Dönmez, A. A., Beilstein, M. A. & Olsen, K. M. (2018). Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Mol. Phylogenet. Evol., 127, pp. 834-842. https://doi.org/10.1016/j.ympev.2018.06.031

Martin, S. L., Lujan-Toro, B. E., Sauder, C. A., James, T., Ohadi, S. & Hall, L. M. (2019). Hybridization rate and hybrid fitness for Camelina microcarpa Andrz. ex DC (♀) and Camelina sativa (L.) Crantz (Brassicaceae) (♂). Evol. Appl., 12, pp. 443-455. https://doi.org/10.1111/eva.12724

Rabokon, A. M. (2021). Intron length polymorphism of tubulin genes as an effective tool for genetic plant diffe- rentiation. Visn. Nac. Acad. Nauk Ukr., No. 10, pp. 30-35 (in Ukrainian). https://doi.org/10.15407/visn2021.10.030

Braglia, L., Gavazzi, F., Gianì, S., Morello, L., & Breviario, D. (2023). Tubulin-based polymorphism (TBP) in plant genotyping. In Shavrukov, Y. (Eds.). Plant genotyping. Methods in Molecular Biology. (Vol. 2638). (pp. 387-401). New York, NY: Humana. https://doi.org/10.1007/978-1-0716-3024-2_28

Bog, M., Braglia, L., Morello, L., Noboa Melo, K. I., Schubert, I., Shchepin, O. N., Sree, K. S., Xu, S., Lam, E. & Appenroth, K. J. (2022). Strategies for intraspecific genotyping of duckweed: comparison of five orthogonal methods applied to the giant duckweed Spirodela polyrhiza. Plants, 11, 3033. https://doi.org/10.3390/plants11223033

Sakharova, V. H., Blume, R. Ya., Rabokon, A. N., Pirko, Ya. V., Mosyakin, S. L. & Blume, Ya. B. (2022). Comparison of methods of DNA extraction from herbarium specimens of little-pod false flax (Camelina microcarpa Andrz. ex DC.). Factors Exp. Evol. Organisms., 30, pp. 30-36 (in Ukrainian). https://doi.org/10.7124/FEEO.v30.1457

Gehringer, A., Friedt, W., Lühs, W. & Snowdon, R. J. (2006). Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome, 49, pp. 1555-1563. https://doi.org/10.1139/g06-117

Brock, J. R., Scott, T., Lee, A. Y., Mosyakin, S. L. & Olsen, K. M. (2020). Interactions between genetics and environment shape Camelina seed oil composition. BMC Plant Biol., 20, 423. https://doi.org/10.1186/s12870-020-02641-8

Blume, R. Y., Rabokon’, A. M., Postovoitova, A. S., Demkovich, A. Ye., Pirko, Ya. V., Yemets, A. I., Rakhmetov, D. B.

& Blume, Ya. B. (2020). Evaluating the diversity and breeding prospects of Ukrainian spring camelina genotypes. Cytol. Genet., 54, No. 5, pp. 420-436. https://doi.org/10.3103/S0095452720050084

Rabokon, A. N., Pirko, Ya. V., Demkovych, A. Ye. & Blume, Ya. B. (2018). Comparative analysis of the efficiency of intron-length polymorphism of β-tubulin genes and microsatellite loci for flax varieties genotyping. Cytol. Genet., 52, pp. 1-10. https://doi.org/10.3103/S0095452718010115



How to Cite

Sakharova, V. H., Blume, R., Rabokon, A., Pirko, Y., & Blume, Y. (2023). EFFICIENCY OF GENETIC DIVERSITY ASSESSMENT OF LITTLE-POD FALSE FLAX (CAMELINA MICROCARPA ANDRZ. EX DC.) IN UKRAINE USING SSR AND TBP MARKER SYSTEMS. Reports of the National Academy of Sciences of Ukraine, (4), 85–94. https://doi.org/10.15407/dopovidi2023.04.085