Заголовок | Чисельне моделювання динаміки тришарової сферичної оболонки з дискретно неоднорідним заповнювачем |
Тип публікації | Journal Article |
Рік публікації | 2020 |
Автори | Орленко, СП |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2020.03.019 |
Номер видання | 3 |
Розділ | Механіка |
Нумерація сторінок | 19-27 |
Дата публікації | 3/2020 |
Мова | Українська |
Анотація | Постійний інтерес до широкого використання шаруватих конструкцій при створенні сучасних надзвукових літальних апаратів і багаторазових космічних транспортних систем з'явився в останні роки і ця тенденція триває і активізується в даний час. Ефективна несуча здатність тришарових оболонкових конструкцій при достатній легкості робить їх дуже корисними в різних інженерних додатках. Безперервна розробка нових конструкційних матеріалів призводить до все більш складних структурних конструкцій, що вимагають ретельного аналізу. Одним з поширених елементів зазначених оболонкових конструкцій є тришарові сферичні оболонки, які піддаються нестаціонарним навантаженням. Опублікована достатня кількість робіт з дослідження динаміки тришарових оболонок [1]. Однак останнім часом, створення об'єктів спеціального призначення тощо зумовлює необхідність розробки конструктивних тришарових оболонкових елементів із заповнювачем ускладненої геометричної структури. Питання динамічної поведінки таких оболонок вивчені недостатньо. У даній роботі кінематичні і статичні гіпотези застосовуються до кожного шару оболонок, що підвищує загальний порядок системи рівнянь, але дозволяє детальніше вивчити динамічну поведінку тришарової структури. В основу рішення задачі покладена теорія оболонок і стрижнів, заснована на зсувній моделі С.П. Тимошенка. Для виведення рівнянь коливань тришарової неоднорідної по товщині структури використовується варіаційний принцип стаціонарності Гамільтона—Остроградського. Чисельне моделювання динаміки тришарової сферичної оболонки з дискретно неоднорідним заповнювачем проводиться за допомогою явної скінчено-різницевої схеми інтегрування рівнянь. Наведено числові результати розв’язку конкретних задач. |
Ключові слова | дискретний заповнювач, нестаціонарне навантаження, теорія оболонок і стрижнів С.П. Тимошенка, тришарова сферична оболонка, чисельні методи |