Cadmium effects on the organization of actin filaments in Arabidopsis thaliana primary root cells

TitleCadmium effects on the organization of actin filaments in Arabidopsis thaliana primary root cells
Publication TypeJournal Article
Year of Publication2014
AuthorsGoriunova, II, Krasylenko, Yu.A, Zaslavsky, VA, Yemets, AI
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.09.127
Issue9
SectionBiochemistry
Pagination127-133
Date Published9/2014
LanguageRussian
Abstract

The effects of cadmium (Cd2+) as a widespread soil pollutant on the organization of plant actin filaments have not been elucidated. It is revealed that CdSO4 inhibits the growth of Arabidopsis thaliana (GFP-FABD2) primary roots that is accompanied by morphological alterations and disturbances of actin filaments organization in primary root cells. It is found that the treatment of seedlings with NdSO4 (5–20 µM) lead to the reorientation and/or depolymerization of actin filaments in cells of the meristematic, transition, and elongation root zones. Hence, actin filaments are supposed to be one of the intracellular targets for Cd2+ in the realization of cellular mechanisms of its phytotoxicity.

KeywordsArabidopsis thaliana primary root cells, cadmium
References: 

1. Nagajyoti P. C., Lee K. D., Sreekanth T. V. M. Environ. Chem. Lett., 2010, 8.: 199–216. https://doi.org/10.1007/s10311-010-0297-8
2. Leintemeir B., Kupper H. Plant Cell Environ., 2001, 34: 208–219.
3. Siddiqui S., Meghvansi M. K., Wani M. A., Jabee F. Acta Phys. Plant., 2009, 31: 531–536. https://doi.org/10.1007/s11738-008-0262-3
4. Parween T., Jan S., Sharma M. P. M. et al. Russ. Agricult. Sci., 2011, 37: 115–119. https://doi.org/10.3103/S1068367411020248
5. Dovgalyuk A. I., Kalinyak T. B., Blume Ya. B. Tsitologiia i genetika, 2001, 1: 3–8 (in Russian).
6. Dovgalyuk A., Kalynyak T., Blume Ya. B. Cell Biol. Int., 2003, 27: 193–195. https://doi.org/10.1016/S1065-6995(02)00334-7
7. Xu P., Liu D., Jiang W. Biol. Plantarum., 2009, 53(2): 387–390. https://doi.org/10.1007/s10535-009-0073-4
8. Pribyl P., Cep´ak V., Zachleder V. Protoplasma, 2005, 226: 231–240. https://doi.org/10.1007/s00709-005-0123-5
9. Fan J.-L., Wei X.-G., Wan L.-C. et al. J. Plant Physiol., 2011, 168: 1157–1167. https://doi.org/10.1016/j.jplph.2011.01.031
10. Voigt B., Timmers A. C. J., Samaj J. et al. Eur. J. Cell Biol., 2005, 84: 95–608.
11. Murashige T., Skoog F. Physiol Plant., 1962, 15(3): 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
12. Yemets A., Sheremet Y., Vissenberg K. et al. Cell Biol. Int., 2008, 32(6): 630–637. https://doi.org/10.1016/j.cellbi.2008.01.013
13. Liu D., Jiang W., Gao X. Biol. Plant., 2003–2004, 47: 79–83. https://doi.org/10.1023/A:1027384932338
14. Rahman A., Bannigan A., Sulaman W. et al. Plant J., 2007, 50: 514–528. https://doi.org/10.1111/j.1365-313X.2007.03068.x
15. D`ıaz-Barriga F., Carrizalaens L., Yanez. L. Toxicol. In Vitro, 1989, 3(4): 277–284.